ترغب بنشر مسار تعليمي؟ اضغط هنا

Zeta functions of periodic cubical lattices and cyclotomic-like polynomials

120   0   0.0 ( 0 )
 نشر من قبل Tomoyuki Shirai
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Zeta functions of periodic cubical lattices are explicitly derived by computing all the eigenvalues of the adjacency operators and their characteristic polynomials. We introduce cyclotomic-like polynomials to give factorization of the zeta function in terms of them and count the number of orbits of the Galois action associated with each cyclotomic-like polynomial to obtain its further factorization. We also give a necessary and sufficient condition for such a polynomial to be irreducible and discuss its irreducibility from this point of view.



قيم البحث

اقرأ أيضاً

107 - Trevor Hyde 2018
We observe that the necklace polynomials $M_d(x) = frac{1}{d}sum_{emid d}mu(e)x^{d/e}$ are highly reducible over $mathbb{Q}$ with many cyclotomic factors. Furthermore, the sequence $Phi_d(x) - 1$ of shifted cyclotomic polynomials exhibits a qualitati vely similar phenomenon, and it is often the case that $M_d(x)$ and $Phi_d(x) - 1$ have many common cyclotomic factors. We explain these cyclotomic factors of $M_d(x)$ and $Phi_d(x) - 1$ in terms of what we call the emph{$d$th necklace operator}. Finally, we show how these cyclotomic factors correspond to certain hyperplane arrangements in finite abelian groups.
We define a zeta function of a finite graph derived from time evolution matrix of quantum walk, and give its determinant expression. Furthermore, we generalize the above result to a periodic graph.
We define a zeta function of a graph by using the time evolution matrix of a general coined quantum walk on it, and give a determinant expression for the zeta function of a finite graph. Furthermore, we present a determinant expression for the zeta function of an (infinite) periodic graph.
In this note, by the umbra calculus method, the Sun and Zagiers congruences involving the Bell numbers and the derangement numbers are generalized to the polynomial cases. Some special congruences are also provided.
133 - Frederic Chapoton 2020
We explore some connections between moments of rescaled little q-Jacobi polynomials, q-analogues of values at negative integers for some Dirichlet series, and the q-Eulerian polynomials of wreath products of symmetric groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا