ﻻ يوجد ملخص باللغة العربية
We define a zeta function of a graph by using the time evolution matrix of a general coined quantum walk on it, and give a determinant expression for the zeta function of a finite graph. Furthermore, we present a determinant expression for the zeta function of an (infinite) periodic graph.
We define a zeta function of a finite graph derived from time evolution matrix of quantum walk, and give its determinant expression. Furthermore, we generalize the above result to a periodic graph.
The rank of a graph is defined to be the rank of its adjacency matrix. A graph is called reduced if it has no isolated vertices and no two vertices with the same set of neighbors. A reduced graph $G$ is said to be maximal if any reduced graph contain
We consider the Ihara zeta function $zeta(u,X//G)$ and Artin-Ihara $L$-function of the quotient graph of groups $X//G$, where $G$ is a group acting on a finite graph $X$ with trivial edge stabilizers. We determine the relationship between the primes
Zeta functions of periodic cubical lattices are explicitly derived by computing all the eigenvalues of the adjacency operators and their characteristic polynomials. We introduce cyclotomic-like polynomials to give factorization of the zeta function i
We construct spectral zeta functions for the Dirac operator on metric graphs. We start with the case of a rose graph, a graph with a single vertex where every edge is a loop. The technique is then developed to cover any finite graph with general ener