ﻻ يوجد ملخص باللغة العربية
We use magneto-hydrodynamical simulations of Milky Way-mass haloes from the Auriga project to examine the properties of surviving and destroyed dwarf galaxies that are accreted by these haloes over cosmic time. We show that the combined luminosity function of surviving and destroyed dwarfs at infall is similar in the various Auriga haloes, and is dominated by the destroyed dwarfs. There is, however, a strong dependence on infall time: destroyed dwarfs have typically early infall times, $t_{infall}<6$ Gyr, whereas the majority of dwarfs accreted at $t_{infall}>10$ Gyr have survived to the present day. Because of their late infall the surviving satellites today had higher metallicites at infall than their destroyed counterparts of similar infall mass; the difference is even more pronounced for the present-day metallicites of satellites, many of which continue to form stars after infall. In agreement with previous work, we find that a small number of relatively massive destroyed dwarf galaxies dominate the mass of the stellar haloes. However, there is a significant radial dependence: while 90 per cent of the mass in the inner regions ($<,20,$kpc) is contributed, on average, by only 3 massive progenitors, the outer regions ($>,100,$kpc) typically have $sim8$ main progenitors of relatively lower mass. Finally, we show that a few massive progenitors dominate the metallicity distribution of accreted stars, even at the metal poor end. Contrary to common assumptions in the literature, dwarf galaxies of mass $M_{*}<10^7 , M_{odot}$ make up less than 10 per cent of the accreted, metal poor stars ([Fe/H] $<,-3$) in the inner $50,$kpc.
We analyze the observed spatial, chemical and dynamical distributions of local metal-poor stars, based on photometrically derived metallicity and distance estimates along with proper motions from the Gaia mission. Along the Galactic prime meridian, w
We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Ways halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierar
Recent advances from astronomical surveys have revealed spatial, chemical, and kinematical inhomogeneities in the inner region of the stellar halo of the Milky Way Galaxy. In particular, large spectroscopic surveys, combined with Gaia astrometric dat
In the $Gaia$ era stellar kinematics are extensively used to study Galactic halo stellar populations, to search for halo structures, and to characterize the interface between the halo and hot disc populations. We use distribution function-based model
We show for the first time, that a fully cosmological hydrodynamical simulation can reproduce key properties of the innermost region of the Milky Way. Our high resolution simulation matches the profile and kinematics of the Milky Ways boxy/peanut-sha