ﻻ يوجد ملخص باللغة العربية
Recent advances from astronomical surveys have revealed spatial, chemical, and kinematical inhomogeneities in the inner region of the stellar halo of the Milky Way Galaxy. In particular, large spectroscopic surveys, combined with Gaia astrometric data, have provided powerful tools for analyzing the detailed abundances and accurate kinematics for individual stars. Despite these noteworthy efforts, however, spectroscopic samples are typically limited by the numbers of stars considered; their analysis and interpretation are also hampered by the complex selection functions that are often employed. Here we present a powerful alternative approach $-$ a synoptic view of the spatial, chemical, and kinematical distributions of stars in the Milky Way based on large photometric survey databases, enabled by a well-calibrated technique for obtaining individual stellar metal abundances from broad-band photometry. We combine metallicities with accurate proper motions from the Gaia mission along the Prime Meridian of the Galaxy, and find that various stellar components are clearly separated from each other in the metallicity versus rotation-velocity space. The observed metallicity distribution of the inner-halo stars deviates from the traditional single-peaked distribution, and exhibits complex substructures comprising varying contributions from individual stellar populations, sometimes with striking double peaks at low metallicities. The substructures revealed from our less-biased, comprehensive maps demonstrate the clear advantages of this approach, which can be built upon by future mixed-band and broad-band photometric surveys, and used as a blueprint for identifying the stars of greatest interest for upcoming spectroscopic studies.
We improve the identification and isolation of individual stellar populations in the Galactic halo based on an updated set of empirically calibrated stellar isochrones in the Sloan Digital Sky Survey (SDSS) and Pan-STARRS 1 (PS1) photometric systems.
We analyze the observed spatial, chemical and dynamical distributions of local metal-poor stars, based on photometrically derived metallicity and distance estimates along with proper motions from the Gaia mission. Along the Galactic prime meridian, w
We show for the first time, that a fully cosmological hydrodynamical simulation can reproduce key properties of the innermost region of the Milky Way. Our high resolution simulation matches the profile and kinematics of the Milky Ways boxy/peanut-sha
We present a new theoretical population synthesis model (the Galaxy Model) to examine and deal with large amounts of data from surveys of the Milky Way and to decipher the present and past structure and history of our own Galaxy. We assume the Galaxy
We have used photometric data on almost 91 000 fundamental-mode RR Lyrae stars (type RRab) detected by the OGLE survey to investigate properties of old populations in the Milky Way. Based on their metallicity distributions, we demonstrate that the Ga