ترغب بنشر مسار تعليمي؟ اضغط هنا

A Quantum Money Solution to the Blockchain Scalability Problem

78   0   0.0 ( 0 )
 نشر من قبل Andrea Coladangelo
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We put forward the idea that classical blockchains and smart contracts are potentially useful primitives not only for classical cryptography, but for quantum cryptography as well. Abstractly, a smart contract is a functionality that allows parties to deposit funds, and release them upon fulfillment of algorithmically checkable conditions, and can thus be employed as a formal tool to enforce monetary incentives. In this work, we give the first example of the use of smart contracts in a quantum setting. We describe a simple hybrid classical-quantum payment system whose main ingredients are a classical blockchain capable of handling stateful smart contracts, and quantum lightning, a strengthening of public-key quantum money introduced by Zhandry (Eurocrypt19). Our hybrid payment system employs quantum states as banknotes and a classical blockchain to settle disputes and to keep track of the valid serial numbers. It has several desirable properties: it is decentralized, requiring no trust in any single entity; payments are as quick as quantum communication, regardless of the total number of users; when a quantum banknote is damaged or lost, the rightful owner can recover the lost value.

قيم البحث

اقرأ أيضاً

59 - Roy Radian , Or Sattath 2019
Quantum money allows a bank to mint quantum money states that can later be verified and cannot be forged. Usually, this requires a quantum communication infrastructure to transfer quantum states between the user and the bank. Gavinsky (CCC 2012) intr oduced the notion of classically verifiable quantum money, which allows verification through classical communication. In this work we introduce the notion of classical minting, and combine it with classical verification to introduce semi-quantum money. Semi-quantum money is the first type of quantum money to allow transactions with completely classical communication and an entirely classical bank. This work features constructions for both a public memory-dependent semi-quantum money scheme and a private memoryless semi-quantum money scheme. The public construction is based on the works of Zhandry and Coladangelo, and the private construction is based on the notion of Noisy Trapdoor Claw Free Functions (NTCF) introduced by Brakerski et al. (FOCS 2018). In terms of technique, our main contribution is a perfect parallel repetition theorem for NTCF.
Blockchain is a distributed database which is cryptographically protected against malicious modifications. While promising for a wide range of applications, current blockchain platforms rely on digital signatures, which are vulnerable to attacks by m eans of quantum computers. The same, albeit to a lesser extent, applies to cryptographic hash functions that are used in preparing new blocks, so parties with access to quantum computation would have unfair advantage in procuring mining rewards. Here we propose a possible solution to the quantum era blockchain challenge and report an experimental realization of a quantum-safe blockchain platform that utilizes quantum key distribution across an urban fiber network for information-theoretically secure authentication. These results address important questions about realizability and scalability of quantum-safe blockchains for commercial and governmental applications.
We propose the concept of pseudorandom states and study their constructions, properties, and applications. Under the assumption that quantum-secure one-way functions exist, we present concrete and efficient constructions of pseudorandom states. The n on-cloning theorem plays a central role in our study---it motivates the proper definition and characterizes one of the important properties of pseudorandom quantum states. Namely, there is no efficient quantum algorithm that can create more copies of the state from a given number of pseudorandom states. As the main application, we prove that any family of pseudorandom states naturally gives rise to a private-key quantum money scheme.
The most realistic situations in quantum mechanics involve the interaction between two or more systems. In the most of reliable models, the form and structure of the interactions generate differential equations which are, in the most of cases, almost impossible to solve exactly. In this paper, using the Schwinger Quantum Action Principle, we found the time transformation function that solves exactly the harmonic oscillator interacting with a set of other harmonic coupled oscillators. In order to do it, we have introduced a new special set of creation and annihilation operators which leads directly to the emph{dressed states} associated to the system, which are the real quantum states of the interacting emph{textquotedblleft field-particletextquotedblright} system. To obtain the closed solution, it is introduced in the same foot a set of emph{normal mode} creation and annihilation operators of the system related to the first ones by an orthogonal transformation. We find the eigenstates, amplitude transitions and the system spectra without any approximation. At last, we show that the Schwinger Variational Principle provides the solutions in a free representation way.
73 - Mark W. Coffey 2017
We illustrate the adiabatic quantum computing solution of the knapsack problem with both integer profits and weights. For problems with $n$ objects (or items) and integer capacity $c$, we give specific examples using both an Ising class problem Hamil tonian requiring $n+c$ qubits and a much more efficient one using $n+[log_2 c]+1$ qubits. The discussion includes a brief mention of classical algorithms for knapsack, applications of this commonly occurring problem, and the relevance of further studies both theoretically and numerically of the behavior of the energy gap. Included too is a demonstration and commentary on a version of quantum search using a certain Ising model. Furthermore, an Appendix presents analytic results concerning the boundary for the easy-versus-hard problem-instance phase transition for the special case subset sum problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا