ﻻ يوجد ملخص باللغة العربية
We illustrate the adiabatic quantum computing solution of the knapsack problem with both integer profits and weights. For problems with $n$ objects (or items) and integer capacity $c$, we give specific examples using both an Ising class problem Hamiltonian requiring $n+c$ qubits and a much more efficient one using $n+[log_2 c]+1$ qubits. The discussion includes a brief mention of classical algorithms for knapsack, applications of this commonly occurring problem, and the relevance of further studies both theoretically and numerically of the behavior of the energy gap. Included too is a demonstration and commentary on a version of quantum search using a certain Ising model. Furthermore, an Appendix presents analytic results concerning the boundary for the easy-versus-hard problem-instance phase transition for the special case subset sum problem.
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers $R(m,n)$ with $m,ngeq 3$, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers $R(
In the Graph Isomorphism problem two N-vertex graphs G and G are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G into G. If yes, then G and G are said to be isomorph
The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm for finding the minimum eigenvalue of a Hamiltonian that involves the optimization of a parameterized quantum circuit. Since the resulting optimization problem is in ge
We show a superpolynomial oracle separation between the power of adiabatic quantum computation with no sign problem and the power of classical computation.
Using Schwinger Variational Principle we solve the problem of quantum harmonic oscillator with time dependent frequency. Here, we do not take the usual approach which implicitly assumes an adiabatic behavior for the frequency. Instead, we propose a n