ﻻ يوجد ملخص باللغة العربية
Federated learning (FL) is an emerging collaborative machine learning method to train models on distributed datasets with privacy concerns. To properly incentivize data owners to contribute their efforts, Shapley Value (SV) is often adopted to fairly assess their contribution. However, the calculation of SV is time-consuming and computationally costly. In this paper, we propose FedCoin, a blockchain-based peer-to-peer payment system for FL to enable a feasible SV based profit distribution. In FedCoin, blockchain consensus entities calculate SVs and a new block is created based on the proof of Shapley (PoSap) protocol. It is in contrast to the popular BitCoin network where consensus entities mine new blocks by solving meaningless puzzles. Based on the computed SVs, a scheme for dividing the incentive payoffs among FL clients with nonrepudiation and tamper-resistance properties is proposed. Experimental results based on real-world data show that FedCoin can promote high-quality data from FL clients through accurately computing SVs with an upper bound on the computational resources required for reaching consensus. It opens opportunities for non-data owners to play a role in FL.
Blockchain is increasingly being used as a distributed, anonymous, trustless framework for energy trading in smart grids. However, most of the existing solutions suffer from reliance on Trusted Third Parties (TTP), lack of privacy, and traffic and pr
This paper focuses on the stationary portion of file download in an unstructured peer-to-peer network, which typically follows for many hours after a flash crowd initiation. The model includes the case that peers can have some pieces at the time of a
Peer-to-peer (p2p) content delivery is promising to provide benefits like cost-saving and scalable peak-demand handling in comparison with conventional content delivery networks (CDNs) and complement the decentralized storage networks such as Filecoi
Peer-to-Peer (P2P) energy trading can facilitate integration of a large number of small-scale producers and consumers into energy markets. Decentralized management of these new market participants is challenging in terms of market settlement, partici
We consider user-private information retrieval (UPIR), an interesting alternative to private information retrieval (PIR) introduced by Domingo-Ferrer et al. In UPIR, the database knows which records have been retrieved, but does not know the identity