ﻻ يوجد ملخص باللغة العربية
We show experimentally that the accuracy of a trained neural network can be predicted surprisingly well by looking only at its weights, without evaluating it on input data. We motivate this task and introduce a formal setting for it. Even when using simple statistics of the weights, the predictors are able to rank neural networks by their performance with very high accuracy (R2 score more than 0.98). Furthermore, the predictors are able to rank networks trained on different, unobserved datasets and with different architectures. We release a collection of 120k convolutional neural networks trained on four different datasets to encourage further research in this area, with the goal of understanding network training and performance better.
Parts of Texas, Oklahoma, and Kansas have experienced increased rates of seismicity in recent years, providing new datasets of earthquake recordings to develop ground motion prediction models for this particular region of the Central and Eastern Nort
This study proposes a novel Graph Convolutional Neural Network with Data-driven Graph Filter (GCNN-DDGF) model that can learn hidden heterogeneous pairwise correlations between stations to predict station-level hourly demand in a large-scale bike-sha
Isotropic Gaussian priors are the de facto standard for modern Bayesian neural network inference. However, such simplistic priors are unlikely to either accurately reflect our true beliefs about the weight distributions, or to give optimal performanc
Large-scale numerical simulations are used across many scientific disciplines to facilitate experimental development and provide insights into underlying physical processes, but they come with a significant computational cost. Deep neural networks (D