ﻻ يوجد ملخص باللغة العربية
This paper tries to establish whether there are variations of the central wavelengths or the profile shapes of diffuse interstellar bands (DIBs) and whether these variations are caused by different physical parameters of translucent clouds. For this purpose we used spectra of two stars seen through two different single clouds: HD34078 (AE Aur) & HD73882 acquired using two different instruments: the MIKE spectrograph, fed with the 6.5 m Magellan telescope at Las Campanas Observatory, and the UVES, fed with the 8 m Kueyen telescope at the Paranal observatory. The wavelength displacements of the DIBs at 6196, 6203, 6376, 6379 and 6614 AA with respect to the well known interstellar atomic and molecular lines (K{sc i} and CH) have been measured. The mentioned shift is seemingly absent in the DIBs at 4726, 4964, 4763, and 4780 AA. In addition the considered profiles may show (in HD34078) extended red wings. The observed phenomena are likely related to physical parameters of intervening clouds (rotational temperatures of molecular species) and may help in the identification of the DIB carriers.
We present the first sample of diffuse interstellar bands (DIBs) in the nearby galaxy M33. Studying DIBs in other galaxies allows the behaviour of the carriers to be examined under interstellar conditions which can be quite different from those of th
The identification of the carriers of the diffuse interstellar bands (DIBs) remains to be established, with the exception of five bands attributed to C60+, although it is generally agreed that DIB carriers should be large carbon-based molecules (with
Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed especially with the first confirmed identification of two strong diffuse interstellar bands (DIBs) with C60+. This justifies reassesing the importance of interst
We study the behavior of eight diffuse interstellar bands (DIBs) in different interstellar environments, as characterized by the fraction of hydrogen in molecular form [$f$(H$_2$)], with comparisons to the corresponding behavior of various known atom
We discuss the absorption due to various constituents of the interstellar medium of M82 seen in moderately high resolution, high signal-to-noise ratio optical spectra of SN 2014J. Complex absorption from M82 is seen, at velocities 45 $le$ $v_{rm LSR}