ﻻ يوجد ملخص باللغة العربية
Magnetic features on the surfaces of cool stars cause variations of their brightness. Such variations have been extensively studied for the Sun. Recent planet-hunting space telescopes allowed measuring brightness variations in hundred thousands of other stars. The new data posed the question of how typical is the Sun as a variable star. Putting solar variability into the stellar context suffers, however, from the bias of solar observations being made from its near-equatorial plane, whereas stars are observed at all possible inclinations. We model solar brightness variations at timescales from days to years as they would be observed at different inclinations. In particular, we consider the effect of the inclination on the power spectrum of solar brightness variations. The variations are calculated in several passbands routinely used for stellar measurements. We employ the Surface Flux Transport Model (SFTM) to simulate the time-dependent spatial distribution of magnetic features on both near- and far-sides of the Sun. This distribution is then used to calculate solar brightness variations following the SATIRE (Spectral And Total Irradiance REconstruction) approach. We have quantified the effect of the inclination on solar brightness variability at timescales down to a day. Thus, our results allow making solar brightness records directly comparable to those obtained by the planet-hunting space telescopes. Furthermore, we decompose solar brightness variations into the components originating from the solar rotation and from the evolution of magnetic features.
The solar brightness varies on timescales from minutes to decades. Determining the sources of such variations, often referred to as solar noise, is of importance for multiple reasons: a) it is the background that limits the detection of solar oscilla
Comparing solar and stellar brightness variations is hampered by the difference in spectral passbands used in observations as well as by the possible difference in the inclination of their rotation axes from the line of sight. We calculate the rotati
Context. Comparison studies of Sun-like stars with the Sun suggest an anomalously low photometric variability of the Sun compared to Sun-like stars with similar magnetic activity. Comprehensive understanding of stellar variability is needed, to find
Context. Considerable effort has been put into using light curves observed by space telescopes such as CoRoT, Kepler and TESS for determining stellar rotation periods. While rotation periods of active stars can be reliably determined, the light curve
It has been demonstrated that the time variability of a stars brightness at different frequencies can be used to infer its surface gravity, radius, mass, and age. With large samples of light curves now available from Kepler and K2, and upcoming surve