ﻻ يوجد ملخص باللغة العربية
Context. Considerable effort has been put into using light curves observed by space telescopes such as CoRoT, Kepler and TESS for determining stellar rotation periods. While rotation periods of active stars can be reliably determined, the light curves of many older and less active stars (e.g. stars similar to the Sun) are quite irregular, which hampers determination of their periods. Aims. We examine the factors causing the irregularities in stellar brightness variations and develop a method for determining rotation periods of low activity stars with irregular light curves. Methods. We extend the Spectral And Total Irradiance Reconstruction (SATIRE) approach for modelling solar brightness variations to Sun-like stars. We calculate the power spectra of stellar brightness variations for various combinations of parameters defining the surface configuration and evolution of stellar magnetic features. Results. The short lifetime of spots in comparison to the stellar rotation period as well as the interplay between spot and facular contributions to brightness variations of stars with near solar activity cause irregularities in their light curves. The power spectra of such stars often lack a peak associated with the rotation period. Nevertheless, the rotation period can still be determined by measuring the period where the concavity of the power spectrum plotted in the log-log scale changes sign, i.e. by identifying the position of the inflection point. Conclusions. The inflection point of the (log-log) power spectrum is found to be a new diagnostic for stellar rotation periods that is shown to work even in cases where the power spectrum shows no peak at the rotation rate.
Young and active stars generally have regular, almost sinusoidal, patterns of variability attributed to their rotation, while the majority of older and less active stars, including the Sun, have more complex and non-regular light-curves which do not
Stellar rotation periods can be determined by observing brightness variations caused by active magnetic regions transiting visible stellar disk as the star rotates. The successful stellar photometric surveys stemming from the Kepler and TESS observat
It has been demonstrated that the time variability of a stars brightness at different frequencies can be used to infer its surface gravity, radius, mass, and age. With large samples of light curves now available from Kepler and K2, and upcoming surve
Context. Comparison studies of Sun-like stars with the Sun suggest an anomalously low photometric variability of the Sun compared to Sun-like stars with similar magnetic activity. Comprehensive understanding of stellar variability is needed, to find
Comparing solar and stellar brightness variations is hampered by the difference in spectral passbands used in observations as well as by the possible difference in the inclination of their rotation axes from the line of sight. We calculate the rotati