ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental realization of 105-qubit random access quantum memory

95   0   0.0 ( 0 )
 نشر من قبل Yunfei Pu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Random access memory is an indispensable device for classical information technology. Analog to this, for quantum information technology, it is desirable to have a random access quantum memory with many memory cells and programmable access to each cell. We report an experiment that realizes a random access quantum memory of 105 qubits carried by 210 memory cells in a macroscopic atomic ensemble. We demonstrate storage of optical qubits into these memory cells and their read-out at programmable times by arbitrary orders with fidelities exceeding any classical bound. Experimental realization of a random access quantum memory with many memory cells and programmable control of its write-in and read-out makes an important step for its application in quantum communication, networking, and computation.



قيم البحث

اقرأ أيضاً

Unsharp measurements are increasingly important for foundational insights in quantum theory and quantum information applications. Here, we report an experimental implementation of unsharp qubit measurements in a sequential communication protocol, bas ed on a quantum random access code. The protocol involves three parties; the first party prepares a qubit system, the second party performs operations which return both a classical and quantum outcome, and the latter is measured by the third party. We demonstrate a nearly-optimal sequential quantum random access code that outperforms both the best possible classical protocol and any quantum protocol which utilises only projective measurements. Furthermore, while only assuming that the involved devices operate on qubits and that detected events constitute a fair sample, we demonstrate the noise-robust characterisation of unsharp measurements based on the sequential quantum random access code. We apply this characterisation towards quantifying the degree of incompatibility of two sequential pairs of quantum measurements.
76 - Y.-F. Pu , N. Jiang , W. Chang 2017
To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experi ment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology.
By considering an unreliable oracle in a query-based model of quantum learning, we present a tradeoff relation between the oracles reliability and the reusability of quantum state of the input data. The tradeoff relation manifests as the fundamental upper bound on the reusability. This limitation on the reusability would increase the quantum access to the input data, i.e., the usage of quantum random access memory (qRAM), repeating the preparation of a superposition of `big input data on the query failure. However, it is found that, a learner can obtain a correct answer even from an unreliable oracle without any additional usage of qRAM---i.e., the complexity of qRAM query does not increase even with an unreliable oracle. This is enabled by repeatedly cycling the quantum state of the input data to the upper bound on the reusability.
As in conventional computing, key attributes of quantum memories are high storage density and, crucially, random access, or the ability to read from or write to an arbitrarily chosen register. However, achieving such random access with quantum memori es in a dense, hardware-efficient manner remains a challenge, for example requiring dedicated cavities per qubit or pulsed field gradients. Here we introduce a protocol using chirped pulses to encode qubits within an ensemble of quantum two-level systems, offering both random access and naturally supporting dynamical decoupling to enhance the memory lifetime. We demonstrate the protocol in the microwave regime using donor spins in silicon coupled to a superconducting cavity, storing up to four multi-photon microwave pulses in distinct memory modes and retrieving them on-demand up to 2~ms later. A further advantage is the natural suppression of superradiant echo emission, which we show is critical when approaching unit cooperativity. This approach offers the potential for microwave random access quantum memories with lifetimes exceeding seconds, while the chirped pulse phase encoding could also be applied in the optical regime to enhance quantum repeaters and networks.
Encoding a qubit in logical quantum states with wavefunctions characterized by disjoint support and robust energies can offer simultaneous protection against relaxation and pure dephasing. Using a circuit-quantum-electrodynamics architecture, we expe rimentally realize a superconducting $0-pi$ qubit, which hosts protected states suitable for quantum-information processing. Multi-tone spectroscopy measurements reveal the energy level structure of the system, which can be precisely described by a simple two-mode Hamiltonian. We find that the parity symmetry of the qubit results in charge-insensitive levels connecting the protected states, allowing for logical operations. The measured relaxation (1.6 ms) and dephasing times (25 $mu$s) demonstrate that our implementation of the $0-pi$ circuit not only broadens the family of superconducting qubits, but also represents a promising candidate for the building block of a fault-tolerant quantum processor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا