ﻻ يوجد ملخص باللغة العربية
We demonstrate that model-based derivative free optimisation algorithms can generate adversarial targeted misclassification of deep networks using fewer network queries than non-model-based methods. Specifically, we consider the black-box setting, and show that the number of networks queries is less impacted by making the task more challenging either through reducing the allowed $ell^{infty}$ perturbation energy or training the network with defences against adversarial misclassification. We illustrate this by contrasting the BOBYQA algorithm with the state-of-the-art model-free adversarial targeted misclassification approaches based on genetic, combinatorial, and direct-search algorithms. We observe that for high $ell^{infty}$ energy perturbations on networks, the aforementioned simpler model-free methods require the fewest queries. In contrast, the proposed BOBYQA based method achieves state-of-the-art results when the perturbation energy decreases, or if the network is trained against adversarial perturbations.
Generative Adversarial Network (GAN) can be viewed as an implicit estimator of a data distribution, and this perspective motivates using the adversarial concept in the true input parameter estimation of black-box generators. While previous works on l
Applications of machine learning (ML) models and convolutional neural networks (CNNs) have been rapidly increased. Although ML models provide high accuracy in many applications, recent investigations show that such networks are highly vulnerable to a
In general, adversarial perturbations superimposed on inputs are realistic threats for a deep neural network (DNN). In this paper, we propose a practical generation method of such adversarial perturbation to be applied to black-box attacks that deman
Deep neural networks (DNNs) have demonstrated excellent performance on various tasks, however they are under the risk of adversarial examples that can be easily generated when the target model is accessible to an attacker (white-box setting). As plen
In recent years, deep neural networks (DNN) have become a highly active area of research, and shown remarkable achievements on a variety of computer vision tasks. DNNs, however, are known to often make overconfident yet incorrect predictions on out-o