ﻻ يوجد ملخص باللغة العربية
Real-world data often presents itself in the form of a network. Examples include social networks, citation networks, biological networks, and knowledge graphs. In their simplest form, networks represent real-life entities (e.g. people, papers, proteins, concepts) as nodes, and describe them in terms of their relations with other entities by means of edges between these nodes. This can be valuable for a range of purposes from the study of information diffusion to bibliographic analysis, bioinformatics research, and question-answering. The quality of networks is often problematic though, affecting downstream tasks. This paper focuses on the common problem where a node in the network in fact corresponds to multiple real-life entities. In particular, we introduce FONDUE, an algorithm based on network embedding for node disambiguation. Given a network, FONDUE identifies nodes that correspond to multiple entities, for subsequent splitting. Extensive experiments on twelve benchmark datasets demonstrate that FONDUE is substantially and uniformly more accurate for ambiguous node identification compared to the existing state-of-the-art, at a comparable computational cost, while less optimal for determining the best way to split ambiguous nodes.
Does adding a theorem to a paper affect its chance of acceptance? Does labeling a post with the authors gender affect the post popularity? This paper develops a method to estimate such causal effects from observational text data, adjusting for confou
Answering complex logical queries on large-scale incomplete knowledge graphs (KGs) is a fundamental yet challenging task. Recently, a promising approach to this problem has been to embed KG entities as well as the query into a vector space such that
Graph Neural Networks (GNNs) are efficient approaches to process graph-structured data. Modelling long-distance node relations is essential for GNN training and applications. However, conventional GNNs suffer from bad performance in modelling long-di
Graph embedding methods represent nodes in a continuous vector space, preserving information from the graph (e.g. by sampling random walks). There are many hyper-parameters to these methods (such as random walk length) which have to be manually tuned
Abbreviation disambiguation is important for automated clinical note processing due to the frequent use of abbreviations in clinical settings. Current models for automated abbreviation disambiguation are restricted by the scarcity and imbalance of la