ﻻ يوجد ملخص باللغة العربية
We introduce GANHopper, an unsupervised image-to-image translation network that transforms images gradually between two domains, through multiple hops. Instead of executing translation directly, we steer the translation by requiring the network to produce in-between images that resemble weighted hybrids between images from the input domains. Our network is trained on unpaired images from the two domains only, without any in-between images. All hops are produced using a single generator along each direction. In addition to the standard cycle-consistency and adversarial losses, we introduce a new hybrid discriminator, which is trained to classify the intermediate images produced by the generator as weighted hybrids, with weights based on a predetermined hop count. We also add a smoothness term to constrain the magnitude of each hop, further regularizing the translation. Compared to previous methods, GANHopper excels at image translations involving domain-specific image features and geometric variations while also preserving non-domain-specific features such as general color schemes.
Image to image translation aims to learn a mapping that transforms an image from one visual domain to another. Recent works assume that images descriptors can be disentangled into a domain-invariant content representation and a domain-specific style
Unsupervised image-to-image translation methods learn to map images in a given class to an analogous image in a different class, drawing on unstructured (non-registered) datasets of images. While remarkably successful, current methods require access
Current unsupervised image-to-image translation techniques struggle to focus their attention on individual objects without altering the background or the way multiple objects interact within a scene. Motivated by the important role of attention in hu
State-of-the-art techniques in Generative Adversarial Networks (GANs) have shown remarkable success in image-to-image translation from peer domain X to domain Y using paired image data. However, obtaining abundant paired data is a non-trivial and exp
Every recent image-to-image translation model inherently requires either image-level (i.e. input-output pairs) or set-level (i.e. domain labels) supervision. However, even set-level supervision can be a severe bottleneck for data collection in practi