ﻻ يوجد ملخص باللغة العربية
We study steady-state properties of a bath of active Brownian particles (ABPs) in two dimensions in the presence of two fixed, permeable (hollow) disklike inclusions, whose interior and exterior regions can exhibit mismatching motility (self-propulsion) strengths for the ABPs. We show that such a discontinuous motility field strongly affects spatial distribution of ABPs and thus also the effective interaction mediated between the inclusions through the active bath. Such net interactions arise from soft interfacial repulsions between ABPs that sterically interact with and/or pass through permeable membranes assumed to enclose the inclusions. Both regimes of repulsion and attractive (albeit with different mechanisms) are reported and summarized in overall phase diagrams.
We study effective two- and three-body interactions between non-active colloidal inclusions in an active bath of chiral or non-chiral particles, using Brownian Dynamics simulations within a standard, two-dimensional model of disk-shaped inclusions an
We present a theory for the interaction between motile particles in an elastic medium on a substrate, relying on two arguments: a moving particle creates a strikingly fore-aft asymmetric distortion in the elastic medium; this strain field reorients o
In a system of colloidal inclusions suspended in a thermalized bath of smaller particles, the bath engenders an attractive force between the inclusions, arising mainly from entropic origins, known as the depletion force. In the case of active bath pa
Recently 1, we presented a general theory for calculat- ing the strength and properties of colloidal interactions mediated by ligand-receptor bonds (such as those that bind DNA-coated colloids). In this communication, we derive a surprisingly simple
The behavior of mobile linkers connecting two semi-flexible charged polymers, such as polyvalent counterions connecting DNA or F-actin chains, is studied theoretically. The chain bending rigidity induces an effective repulsion between linkers at larg