ﻻ يوجد ملخص باللغة العربية
Recently 1, we presented a general theory for calculat- ing the strength and properties of colloidal interactions mediated by ligand-receptor bonds (such as those that bind DNA-coated colloids). In this communication, we derive a surprisingly simple analytical form for the inter- action free energy, which was previously obtainable only via a costly numerical thermodynamic integration. As a result, the computational effort to obtain potentials of in- teraction is significantly reduced. Moreover, we can gain insight from this analytic expression for the free energy in limiting cases. In particular, the connection of our general theory to other previous specialised approaches is now made transparent. This important simplification will significantly broaden the scope of our theory.
We study steady-state properties of a bath of active Brownian particles (ABPs) in two dimensions in the presence of two fixed, permeable (hollow) disklike inclusions, whose interior and exterior regions can exhibit mismatching motility (self-propulsi
A large class of mesoscopic or macroscopic flocking theories are coarse-grained from microscopic models that feature binary interactions as the chief aligning mechanism. However while such theories seemingly predict the existence of polar order with
Here we present a program aimed at free-energy calculations in molecular systems. It consists of a series of routines that can be interfaced with the most popular classical molecular dynamics (MD) codes through a simple patching procedure. This leave
We present a simple yet accurate numerical approach to compute the free energy of binding of multivalent objects on a receptor-coated surface. The method correctly accounts for the fact that one ligand can bind to at most one receptor. The numerical
Experimental evidence shows that there is a feedback between cell shape and cell motion. How this feedback impacts the collective behavior of dense cell monolayers remains an open question. We investigate the effect of a feedback that tends to align