ترغب بنشر مسار تعليمي؟ اضغط هنا

General theory of interpolation error estimates on anisotropic meshes

140   0   0.0 ( 0 )
 نشر من قبل Hiroki Ishizaka
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a general theory of estimating interpolation error for smooth functions in two and three dimensions. In our theory, the error of interpolation is bound in terms of the diameter of a simplex and a geometric parameter. In the two-dimensional case, our geometric parameter is equivalent to the circumradius of a triangle. In the three-dimensional case, our geometric parameter also represents the flatness of a tetrahedron. Through the introduction of the geometric parameter, the error estimates newly obtained can be applied to cases that violate the maximum-angle condition.

قيم البحث

اقرأ أيضاً

We present a general theory of interpolation error estimates for smooth functions and inverse inequalities on anisotropic meshes. In our theory, the error of interpolation is bound in terms of the diameter of a simplex and a geometric parameter. In t he two-dimensional case, our geometric parameter is equivalent to the circumradius of a triangle. In the three-dimensional case, our geometric parameter also represents the flatness of a tetrahedron. This paper also includes corrections to an error in General theory of interpolation error estimates on anisotropic meshes (Japan Journal of Industrial and Applied Mathematics, 38 (2021) 163-191), in which Theorem 2 was incorrect.
This paper describes the analysis of Lagrange interpolation errors on tetrahedrons. In many textbooks, the error analysis of Lagrange interpolation is conducted under geometric assumptions such as shape regularity or the (generalized) maximum angle c ondition. In this paper, we present a new estimation in which the error is bounded in terms of the diameter and projected circumradius of the tetrahedron. Because we do not impose any geometric restrictions on the tetrahedron itself, our error estimation may be applied to any tetrahedralizations of domains including very thin tetrahedrons.
Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analy sis and practical computations. In this paper, we present a new symmetric interior penalty DG scheme with a modified penalty term. We show that, without imposing the shape-regularity condition on the meshes, the new DG scheme inherits all of the good properties of standard DG methods, and is thus robust on anisotropic meshes. Numerical experiments confirm the theoretical error estimates obtained.
We investigate the piecewise linear nonconforming Crouzeix-Raviar and the lowest order Raviart-Thomas finite-element methods for the Poisson problem on three-dimensional anisotropic meshes. We first give error estimates of the Crouzeix-Raviart and th e Raviart-Thomas finite-element approximate problems. We next present the equivalence between the Raviart-Thomas finite-element method and the enriched Crouzeix-Raviart finite-element method. We emphasise that we do not impose either shape-regular or maximum-angle condition during mesh partitioning. Numerical results confirm the results that we obtained.
We present the error analysis of Lagrange interpolation on triangles. A new textit{a priori} error estimate is derived in which the bound is expressed in terms of the diameter and circumradius of a triangle. No geometric conditions on triangles are i mposed in order to get this type of error estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا