ترغب بنشر مسار تعليمي؟ اضغط هنا

The Break-Even Point on Optimization Trajectories of Deep Neural Networks

64   0   0.0 ( 0 )
 نشر من قبل Stanis{\\l}aw Jastrz\\k{e}bski
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The early phase of training of deep neural networks is critical for their final performance. In this work, we study how the hyperparameters of stochastic gradient descent (SGD) used in the early phase of training affect the rest of the optimization trajectory. We argue for the existence of the break-even point on this trajectory, beyond which the curvature of the loss surface and noise in the gradient are implicitly regularized by SGD. In particular, we demonstrate on multiple classification tasks that using a large learning rate in the initial phase of training reduces the variance of the gradient, and improves the conditioning of the covariance of gradients. These effects are beneficial from the optimization perspective and become visible after the break-even point. Complementing prior work, we also show that using a low learning rate results in bad conditioning of the loss surface even for a neural network with batch normalization layers. In short, our work shows that key properties of the loss surface are strongly influenced by SGD in the early phase of training. We argue that studying the impact of the identified effects on generalization is a promising future direction.

قيم البحث

اقرأ أيضاً

95 - Yulin Liu , Mark Hansen 2018
Reliable 4D aircraft trajectory prediction, whether in a real-time setting or for analysis of counterfactuals, is important to the efficiency of the aviation system. Toward this end, we first propose a highly generalizable efficient tree-based matchi ng algorithm to construct image-like feature maps from high-fidelity meteorological datasets - wind, temperature and convective weather. We then model the track points on trajectories as conditional Gaussian mixtures with parameters to be learned from our proposed deep generative model, which is an end-to-end convolutional recurrent neural network that consists of a long short-term memory (LSTM) encoder network and a mixture density LSTM decoder network. The encoder network embeds last-filed flight plan information into fixed-size hidden state variables and feeds the decoder network, which further learns the spatiotemporal correlations from the historical flight tracks and outputs the parameters of Gaussian mixtures. Convolutional layers are integrated into the pipeline to learn representations from the high-dimension weather features. During the inference process, beam search, adaptive Kalman filter, and Rauch-Tung-Striebel smoother algorithms are used to prune the variance of generated trajectories.
The prevailing thinking is that orthogonal weights are crucial to enforcing dynamical isometry and speeding up training. The increase in learning speed that results from orthogonal initialization in linear networks has been well-proven. However, whil e the same is believed to also hold for nonlinear networks when the dynamical isometry condition is satisfied, the training dynamics behind this contention have not been thoroughly explored. In this work, we study the dynamics of ultra-wide networks across a range of architectures, including Fully Connected Networks (FCNs) and Convolutional Neural Networks (CNNs) with orthogonal initialization via neural tangent kernel (NTK). Through a series of propositions and lemmas, we prove that two NTKs, one corresponding to Gaussian weights and one to orthogonal weights, are equal when the network width is infinite. Further, during training, the NTK of an orthogonally-initialized infinite-width network should theoretically remain constant. This suggests that the orthogonal initialization cannot speed up training in the NTK (lazy training) regime, contrary to the prevailing thoughts. In order to explore under what circumstances can orthogonality accelerate training, we conduct a thorough empirical investigation outside the NTK regime. We find that when the hyper-parameters are set to achieve a linear regime in nonlinear activation, orthogonal initialization can improve the learning speed with a large learning rate or large depth.
The evolution of a deep neural network trained by the gradient descent can be described by its neural tangent kernel (NTK) as introduced in [20], where it was proven that in the infinite width limit the NTK converges to an explicit limiting kernel an d it stays constant during training. The NTK was also implicit in some other recent papers [6,13,14]. In the overparametrization regime, a fully-trained deep neural network is indeed equivalent to the kernel regression predictor using the limiting NTK. And the gradient descent achieves zero training loss for a deep overparameterized neural network. However, it was observed in [5] that there is a performance gap between the kernel regression using the limiting NTK and the deep neural networks. This performance gap is likely to originate from the change of the NTK along training due to the finite width effect. The change of the NTK along the training is central to describe the generalization features of deep neural networks. In the current paper, we study the dynamic of the NTK for finite width deep fully-connected neural networks. We derive an infinite hierarchy of ordinary differential equations, the neural tangent hierarchy (NTH) which captures the gradient descent dynamic of the deep neural network. Moreover, under certain conditions on the neural network width and the data set dimension, we prove that the truncated hierarchy of NTH approximates the dynamic of the NTK up to arbitrary precision. This description makes it possible to directly study the change of the NTK for deep neural networks, and sheds light on the observation that deep neural networks outperform kernel regressions using the corresponding limiting NTK.
Modern neural networks often contain significantly more parameters than the size of their training data. We show that this excess capacity provides an opportunity for embedding secret machine learning models within a trained neural network. Our novel framework hides the existence of a secret neural network with arbitrary desired functionality within a carrier network. We prove theoretically that the secret networks detection is computationally infeasible and demonstrate empirically that the carrier network does not compromise the secret networks disguise. Our paper introduces a previously unknown steganographic technique that can be exploited by adversaries if left unchecked.
In this work, we propose to employ information-geometric tools to optimize a graph neural network architecture such as the graph convolutional networks. More specifically, we develop optimization algorithms for the graph-based semi-supervised learnin g by employing the natural gradient information in the optimization process. This allows us to efficiently exploit the geometry of the underlying statistical model or parameter space for optimization and inference. To the best of our knowledge, this is the first work that has utilized the natural gradient for the optimization of graph neural networks that can be extended to other semi-supervised problems. Efficient computations algorithms are developed and extensive numerical studies are conducted to demonstrate the superior performance of our algorithms over existing algorithms such as ADAM and SGD.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا