ترغب بنشر مسار تعليمي؟ اضغط هنا

Addressing Some Limitations of Transformers with Feedback Memory

146   0   0.0 ( 0 )
 نشر من قبل Sainbayar Sukhbaatar
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transformers have been successfully applied to sequential, auto-regressive tasks despite being feedforward networks. Unlike recurrent neural networks, Transformers use attention to capture temporal relations while processing input tokens in parallel. While this parallelization makes them computationally efficient, it restricts the model from fully exploiting the sequential nature of the input. The representation at a given layer can only access representations from lower layers, rather than the higher level representations already available. In this work, we propose the Feedback Transformer architecture that exposes all previous representations to all future representations, meaning the lowest representation of the current timestep is formed from the highest-level abstract representation of the past. We demonstrate on a variety of benchmarks in language modeling, machine translation, and reinforcement learning that the increased representation capacity can create small, shallow models with much stronger performance than comparable Transformers.



قيم البحث

اقرأ أيضاً

59 - Jack W. Rae , Ali Razavi 2020
Deep attention models have advanced the modelling of sequential data across many domains. For language modelling in particular, the Transformer-XL -- a Transformer augmented with a long-range memory of past activations -- has been shown to be state-o f-the-art across a variety of well-studied benchmarks. The Transformer-XL incorporates a long-range memory at every layer of the network, which renders its state to be thousands of times larger than RNN predecessors. However it is unclear whether this is necessary. We perform a set of interventions to show that comparable performance can be obtained with 6X fewer long range memories and better performance can be obtained by limiting the range of attention in lower layers of the network.
Standard autoregressive language models perform only polynomial-time computation to compute the probability of the next symbol. While this is attractive, it means they cannot model distributions whose next-symbol probability is hard to compute. Indee d, they cannot even model them well enough to solve associated easy decision problems for which an engineer might want to consult a language model. These limitations apply no matter how much computation and data are used to train the model, unless the model is given access to oracle parameters that grow superpolynomially in sequence length. Thus, simply training larger autoregressive language models is not a panacea for NLP. Alternatives include energy-based models (which give up efficient sampling) and latent-variable autoregressive models (which give up efficient scoring of a given string). Both are powerful enough to escape the above limitations.
Transformers have proved effective in many NLP tasks. However, their training requires non-trivial efforts regarding designing cutting-edge optimizers and learning rate schedulers carefully (e.g., conventional SGD fails to train Transformers effectiv ely). Our objective here is to understand $textit{what complicates Transformer training}$ from both empirical and theoretical perspectives. Our analysis reveals that unbalanced gradients are not the root cause of the instability of training. Instead, we identify an amplification effect that influences training substantially -- for each layer in a multi-layer Transformer model, heavy dependency on its residual branch makes training unstable, since it amplifies small parameter perturbations (e.g., parameter updates) and results in significant disturbances in the model output. Yet we observe that a light dependency limits the model potential and leads to inferior trained models. Inspired by our analysis, we propose Admin ($textbf{Ad}$aptive $textbf{m}$odel $textbf{in}$itialization) to stabilize stabilize the early stages training and unleash its full potential in the late stage. Extensive experiments show that Admin is more stable, converges faster, and leads to better performance. Implementations are released at: https://github.com/LiyuanLucasLiu/Transforemr-Clinic.
Transformer networks have lead to important progress in language modeling and machine translation. These models include two consecutive modules, a feed-forward layer and a self-attention layer. The latter allows the network to capture long term depen dencies and are often regarded as the key ingredient in the success of Transformers. Building upon this intuition, we propose a new model that solely consists of attention layers. More precisely, we augment the self-attention layers with persistent memory vectors that play a similar role as the feed-forward layer. Thanks to these vectors, we can remove the feed-forward layer without degrading the performance of a transformer. Our evaluation shows the benefits brought by our model on standard character and word level language modeling benchmarks.
Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP. Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our theoretical analysis reveals some of the benefits of having $O(1)$ global tokens (such as CLS), that attend to the entire sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to 8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context, BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also propose novel applications to genomics data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا