ترغب بنشر مسار تعليمي؟ اضغط هنا

Master equation for the finite state space planning problem

199   0   0.0 ( 0 )
 نشر من قبل Charles Bertucci
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of existence, regularity and uniqueness of solutions of the master equation associated with the mean field planning problem in the finite state space case, in the presence of a common noise. The results hold under monotonicity assumptions, which are used crucially in the different proofs of the paper. We also make a link with the trajectories induced by the solution of the master equation and start a discussion on the case of boundary conditions.



قيم البحث

اقرأ أيضاً

322 - Charles Bertucci 2020
We present a new notion of solution for mean field games master equations. This notion allows us to work with solutions which are merely continuous. We prove first results of uniqueness and stability for such solutions. It turns out that this notion is helpful to characterize the value function of mean field games of optimal stopping or impulse control and this is the topic of the second half of this paper. The notion of solution we introduce is only useful in the monotone case. We focus in this paper in the finite state space case.
We study the Bellman equation in the Wasserstein space arising in the study of mean field control problems, namely stochastic optimal control problems for McKean-Vlasov diffusion processes. Using the standard notion of viscosity solution {`a} la Cran dall-Lions extended to our Wasserstein setting, we prove a comparison result under general conditions, which coupled with the dynamic programming principle, implies that the value function is the unique viscosity solution of the Master Bellman equation. This is the first uniqueness result in such a second-order context. The classical arguments used in the standard cases of equations in finite-dimensional spaces or in infinite-dimensional separable Hilbert spaces do not extend to the present framework, due to the awkward nature of the underlying Wasserstein space. The adopted strategy is based on finite-dimensional approximations of the value function obtained in terms of the related cooperative n-player game, and on the construction of a smooth gauge-type function, built starting from a regularization of a sharpe estimate of the Wasserstein metric; such a gauge-type function is used to generate maxima/minima through a suitable extension of the Borwein-Preiss generalization of Ekelands variational principle on the Wasserstein space.
127 - Charles Bertucci 2021
We present the notion of monotone solution of mean field games master equations in the case of a continuous state space. We establish the existence, uniqueness and stability of such solutions under standard assumptions. This notion allows us to work with solutions which are merely continuous in the measure argument, in the case of first order master equations. We study several structures of common noises, in particular ones in which common jumps (or aggregate shocks) can happen randomly, and ones in which the correlation of randomness is carried by an additional parameter.
157 - M. Palese , R.A. Leo 2003
We provide an exact regular solution of an operator system arising as the prolongation structure associated with the heavenly equation. This solution is expressed in terms of operator Bessel coefficients.
Let $H$ be a norm of ${bf R}^N$ and $H_0$ the dual norm of $H$. Denote by $Delta_H$ the Finsler-Laplace operator defined by $Delta_Hu:=mbox{div},(H( abla u) abla_xi H( abla u))$. In this paper we prove that the Finsler-Laplace operator $Delta_H$ acts as a linear operator to $H_0$-radially symmetric smooth functions. Furthermore, we obtain an optimal sufficient condition for the existence of the solution to the Cauchy problem for the Finsler heat equation $$ partial_t u=Delta_H u,qquad xin{bf R}^N,quad t>0, $$ where $Nge 1$ and $partial_t:=partial/partial t$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا