ترغب بنشر مسار تعليمي؟ اضغط هنا

The DIDI dataset: Digital Ink Diagram data

68   0   0.0 ( 0 )
 نشر من قبل Thomas Deselaers
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We are releasing a dataset of diagram drawings with dynamic drawing information. The dataset aims to foster research in interactive graphical symbolic understanding. The dataset was obtained using a prompted data collection effort.

قيم البحث

اقرأ أيضاً

Digital ink promises to combine the flexibility and aesthetics of handwriting and the ability to process, search and edit digital text. Character recognition converts handwritten text into a digital representation, albeit at the cost of losing person alized appearance due to the technical difficulties of separating the interwoven components of content and style. In this paper, we propose a novel generative neural network architecture that is capable of disentangling style from content and thus making digital ink editable. Our model can synthesize arbitrary text, while giving users control over the visual appearance (style). For example, allowing for style transfer without changing the content, editing of digital ink at the word level and other application scenarios such as spell-checking and correction of handwritten text. We furthermore contribute a new dataset of handwritten text with fine-grained annotations at the character level and report results from an initial user evaluation.
92 - Nathan Brugnone 2019
Big data often has emergent structure that exists at multiple levels of abstraction, which are useful for characterizing complex interactions and dynamics of the observations. Here, we consider multiple levels of abstraction via a multiresolution geo metry of data points at different granularities. To construct this geometry we define a time-inhomogeneous diffusion process that effectively condenses data points together to uncover nested groupings at larger and larger granularities. This inhomogeneous process creates a deep cascade of intrinsic low pass filters on the data affinity graph that are applied in sequence to gradually eliminate local variability while adjusting the learned data geometry to increasingly coarser resolutions. We provide visualizations to exhibit our method as a continuously-hierarchical clustering with directions of eliminated variation highlighted at each step. The utility of our algorithm is demonstrated via neuronal data condensation, where the constructed multiresolution data geometry uncovers the organization, grouping, and connectivity between neurons.
Accurate hand pose estimation at joint level has several uses on human-robot interaction, user interfacing and virtual reality applications. Yet, it currently is not a solved problem. The novel deep learning techniques could make a great improvement on this matter but they need a huge amount of annotated data. The hand pose datasets released so far present some issues that make them impossible to use on deep learning methods such as the few number of samples, high-level abstraction annotations or samples consisting in depth maps. In this work, we introduce a multiview hand pose dataset in which we provide color images of hands and different kind of annotations for each, i.e the bounding box and the 2D and 3D location on the joints in the hand. Besides, we introduce a simple yet accurate deep learning architecture for real-time robust 2D hand pose estimation.
We present AirCode, a technique that allows the user to tag physically fabricated objects with given information. An AirCode tag consists of a group of carefully designed air pockets placed beneath the object surface. These air pockets are easily pro duced during the fabrication process of the object, without any additional material or postprocessing. Meanwhile, the air pockets affect only the scattering light transport under the surface, and thus are hard to notice to our naked eyes. But, by using a computational imaging method, the tags become detectable. We present a tool that automates the design of air pockets for the user to encode information. AirCode system also allows the user to retrieve the information from captured images via a robust decoding algorithm. We demonstrate our tagging technique with applications for metadata embedding, robotic grasping, as well as conveying object affordances.
The interpretation of data is fundamental to machine learning. This paper investigates practices of image data annotation as performed in industrial contexts. We define data annotation as a sense-making practice, where annotators assign meaning to da ta through the use of labels. Previous human-centered investigations have largely focused on annotators subjectivity as a major cause for biased labels. We propose a wider view on this issue: guided by constructivist grounded theory, we conducted several weeks of fieldwork at two annotation companies. We analyzed which structures, power relations, and naturalized impositions shape the interpretation of data. Our results show that the work of annotators is profoundly informed by the interests, values, and priorities of other actors above their station. Arbitrary classifications are vertically imposed on annotators, and through them, on data. This imposition is largely naturalized. Assigning meaning to data is often presented as a technical matter. This paper shows it is, in fact, an exercise of power with multiple implications for individuals and society.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا