ترغب بنشر مسار تعليمي؟ اضغط هنا

Collinear Electroweak Radiation in Antenna Parton Showers

69   0   0.0 ( 0 )
 نشر من قبل Rob Verheyen
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a first implementation of collinear electroweak radiation in the Vincia parton shower. Due to the chiral nature of the electroweak theory, explicit spin dependence in the shower algorithm is required. We thus use the spinor-helicity formalism to compute helicity-dependent branching kernels, taking special care to deal with the gauge relics that may appear in computation that involve longitudinal polarizations of the massive electroweak vector bosons. These kernels are used to construct a shower algorithm that includes all possible collinear final-state electroweak branchings, including those induced by the Yang-Mills triple vector boson coupling and all Higgs couplings, as well as vector boson emissions from the initial state. We incorporate a treatment of features particular to the electroweak theory, such as the effects of bosonic interference and recoiler effects, as well as a preliminary description of the overlap between electroweak branchings and resonance decays. Some qualifying results on electroweak branching spectra at high energies, as well as effects on LHC physics are presented. Possible future improvements are discussed, including treatment of soft and spin effects, as well as issues unique to the electroweak sector.

قيم البحث

اقرأ أيضاً

We present a formalism for a fully coherent QED parton shower. The complete multipole structure of photonic radiation is incorporated in a single branching kernel. The regular on-shell 2 to 3 kinematic picture is kept intact by dividing the radiative phase space into sectors, allowing for a definition of the ordering variable that is similar to QCD antenna showers. A modified version of the Sudakov veto algorithm is discussed that increases performance at the cost of the introduction of weighted events. Due to the absence of a soft singularity, the formalism for photon splitting is very similar to the QCD analogon of gluon splitting. However, since no color structure is available to guide the selection of a spectator, a weighted selection procedure from all available spectators is introduced.
When the energy of the heavy quark is comparable with its mass, it is natural to attribute this heavy quark to the hard part of the reaction. At large energies, this approach is impractical due to large logarithms from intensive QCD radiation affecti ng both inclusive and differential observables. We present a formalism for all-order summation of such logarithms and reliable description of heavy-quark distributions at all energies. As an illustration, we calculate angular distributions of B-mesons produced in neutral-current events at large momentum transfers at the ep collider HERA.
We present the determination of Transverse Momentum Dependent (TMD) parton distributions from Monte Carlo parton showers. We investigate the effective TMD distributions obtained from the PYTHIA8 and HERWIG6 parton showers and compare them to the TMD distributions determined within the Parton Branching method.
We map the spectrum of $1to 2$ parton splittings inside a medium characterized by a transport coefficient $hat q$ onto the kinematical Lund plane, taking into account the finite formation time of the process. We discuss the distinct regimes arising i n this map for in-medium splittings, pointing out the close correspondence to a semi-classical description in the limit of hard, collinear radiation with short formation times. Although we disregard any modifications of the original parton kinematics in course of the propagation through the medium, subtle modifications to the radiation pattern compared to the vacuum baseline can be traced back to the physics of color decoherence and accumulated interactions in the medium. We provide theoretical support to vacuum-like emissions inside the medium by delimiting the regions of phase space where it is dominant, identifying also the relevant time-scales involved. The observed modifications are shown to be quite general for any dipole created in the medium.
Initial state evolution in parton shower event generators involves parton distribution functions. We examine the probability for the system to evolve from a higher scale to a lower scale without an initial state splitting. A simple argument suggests that this probability, when multiplied by the ratio of the parton distributions at the two scales, should be independent of the parton distribution functions. We call this the PDF property. We examine whether the PDF property actually holds using Pythia and Deductor. We also test a related property for the Deductor shower and discuss the physics behind the results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا