ﻻ يوجد ملخص باللغة العربية
In this work, we investigate information freshness in a status update communication system consisting of a source-destination link. Initially, we study the properties of a sample path of the age of information (AoI) process at the destination. We obtain a general formula of the stationary distribution of the AoI, under the assumption of ergodicity. We relate this result to a discrete time queueing system and provide a general expression of the generating function of AoI in relation with the system time and the peak age of information (PAoI) metric. Furthermore, we consider three different single-server system models and we obtain closed-form expressions of the generating functions and the stationary distributions of the AoI and the PAoI. The first model is a first-come-first-served (FCFS) queue, the second model is a preemptive last-come-first-served (LCFS) queue, and the last model is a bufferless system with packet dropping. We build upon these results to provide a methodology for analyzing general non-linear age functions for this type of systems, using representations of functions as power series.
We study the multi-user scheduling problem for minimizing the Age of Information (AoI) in cellular wireless networks under stationary and non-stationary regimes. We derive fundamental lower bounds for the scheduling problem and design efficient onlin
There is a growing interest in analysing the freshness of data in networked systems. Age of Information (AoI) has emerged as a popular metric to quantify this freshness at a given destination. There has been a significant research effort in optimizin
While age of Information (AoI) has gained importance as a metric characterizing the fresh-ness of information in information-update systems and time-critical applications, most previous studies on AoI have been theoretical. In this chapter, we compil
More and more emerging Internet of Things (IoT) applications involve status updates, where various IoT devices monitor certain physical processes and report their latest statuses to the relevant information fusion nodes. A new performance measure, te
In this paper, we study large population multi-agent reinforcement learning (RL) in the context of discrete-time linear-quadratic mean-field games (LQ-MFGs). Our setting differs from most existing work on RL for MFGs, in that we consider a non-statio