ﻻ يوجد ملخص باللغة العربية
There is a growing interest in analysing the freshness of data in networked systems. Age of Information (AoI) has emerged as a popular metric to quantify this freshness at a given destination. There has been a significant research effort in optimizing this metric in communication and networking systems under different settings. In contrast to previous works, we are interested in a fundamental question, what is the minimum achievable AoI in any single-server-single-source queuing system for a given service-time distribution? To address this question, we study a problem of optimizing AoI under service preemptions. Our main result is on the characterization of the minimum achievable average peak AoI (PAoI). We obtain this result by showing that a fixed-threshold policy is optimal in the set of all randomized-threshold causal policies. We use the characterization to provide necessary and sufficient conditions for the service-time distributions under which preemptions are beneficial.
In cloud storage systems with a large number of servers, files are typically not stored in single servers. Instead, they are split, replicated (to ensure reliability in case of server malfunction) and stored in different servers. We analyze the mean
We consider a transmission scheduling problem in which multiple systems receive update information through a shared Time Division Multiple Access (TDMA) channel. To provide timely delivery of update information, the problem asks for a schedule that m
In this work, we investigate information freshness in a status update communication system consisting of a source-destination link. Initially, we study the properties of a sample path of the age of information (AoI) process at the destination. We obt
The main contribution of this paper is to design an Information Retrieval (IR) technique based on Algorithmic Information Theory (using the Normalized Compression Distance- NCD), statistical techniques (outliers), and novel organization of data base
The ability to integrate information in the brain is considered to be an essential property for cognition and consciousness. Integrated Information Theory (IIT) hypothesizes that the amount of integrated information ($Phi$) in the brain is related to