ترغب بنشر مسار تعليمي؟ اضغط هنا

T-Witts from the horizon

70   0   0.0 ( 0 )
 نشر من قبل Daniel Grumiller
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Expanding around null hypersurfaces, such as generic Kerr black hole horizons, using co-rotating Kruskal-Israel-like coordinates we study the associated surface charges, their symmetries and the corresponding phase space within Einstein gravity. Our surface charges are not integrable in general. Their integrable part generates an algebra including superrotations and a BMS_3-type algebra that we dub T-Witt algebra. The non-integrable part accounts for the flux passing through the null hypersurface. We put our results in the context of earlier constructions of near horizon symmetries, soft hair and of the program to semi-classically identify Kerr black hole microstates.



قيم البحث

اقرأ أيضاً

We study gravitational perturbations around the near horizon geometry of the (near) extreme Kerr black hole. By considering a consistent truncation for the metric fluctuations, we obtain a solution to the linearized Einstein equations. The dynamics i s governed by two master fields which, in the context of the nAdS$_2$/nCFT$_1$ correspondence, are both irrelevant operators of conformal dimension $Delta=2$. These fields control the departure from extremality by breaking the conformal symmetry of the near horizon region. One of the master fields is tied to large diffeomorphisms of the near horizon, with its equations of motion compatible with a Schwarzian effective action. The other field is essential for a consistent description of the geometry away from the horizon.
The membrane paradigm posits that black hole microstates are dynamical degrees of freedom associated with a physical membrane vanishingly close to the black holes event horizon. The soft hair paradigm postulates that black holes can be equipped with zero-energy charges associated with residual diffeomorphisms that label near horizon degrees of freedom. In this essay we argue that the latter paradigm implies the former. More specifically, we exploit suitable near horizon boundary conditions that lead to an algebra of `soft hair charges containing infinite copies of the Heisenberg algebra, associated with area-preserving shear deformations of black hole horizons. We employ the near horizon soft hair and its Heisenberg algebra to provide a formulation of the membrane paradigm and show how it accounts for black hole entropy.
We address the question of the uniqueness of the Schwarzschild black hole by considering the following question: How many meaningful solutions of the Einstein equations exist that agree with the Schwarzschild solution (with a fixed mass m) everywhere except maybe on a codimension one hypersurface? The perhaps surprising answer is that the solution is unique (and uniquely the Schwarzschild solution everywhere in spacetime) *unless* the hypersurface is the event horizon of the Schwarzschild black hole, in which case there are actually an infinite number of distinct solutions. We explain this result and comment on some of the possible implications for black hole physics.
We study a $T^2$ deformation of large $N$ conformal field theories, a higher dimensional generalization of the $Tbar T$ deformation. The deformed partition function satisfies a flow equation of the diffusion type. We solve this equation by finding it s diffusion kernel, which is given by the Euclidean gravitational path integral in $d+1$ dimensions between two boundaries with Dirichlet boundary conditions for the metric. This is natural given the connection between the flow equation and the Wheeler-DeWitt equation, on which we offer a new perspective by giving a gauge-invariant relation between the deformed partition function and the radial WDW wave function. An interesting output of the flow equation is the gravitational path integral measure which is consistent with a constrained phase space quantization. Finally, we comment on the relation between the radial wave function and the Hartle-Hawking wave functions dual to states in the CFT, and propose a way of obtaining the volume of the maximal slice from the $T^2$ deformation.
We illustrate the analogue of the Unruh effect for a quantum system on the real line. Our derivation relies solely on basic elements of representation theory of the group of affine transformations without a notion of time or metric. Our result shows that a thermal distribution naturally emerges in connecting quantum states belonging to representations associated to distinct notions of translational symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا