ﻻ يوجد ملخص باللغة العربية
The shape of the luminosity function of white dwarfs (WDLF) is sensitive to the characteristic cooling time and, therefore, it can be used to test the existence of additional sources or sinks of energy such as those predicted by alternative physical theories. However, because of the degeneracy between the physical properties of white dwarfs and the properties of the Galaxy, the star formation history (SFH) and the IMF, it is almost always possible to explain any anomaly as an artifact introduced by the star formation rate. To circumvent this problem there are at least two possibilities, the analysis of the WDLF in populations with different stories, like disc and halo, and the search of effects not correlated with the SFH. These procedures are illustrated with the case of axions.
The evolution of white dwarfs is a simple gravothermal process. This process can be tested in two ways, through the luminosity function of these stars and through the secular variation of the period of pulsation of those stars that are variable. Here
The observation of low-frequency gravitational waves with the Laser Interferometer Space Antenna will allow the study of new sources of gravitational radiation that are not accessible by ground-based instruments. Gravitational wave sources provide in
A next generation of Compton and pair telescopes that improve MeV-band detection sensitivity by more than a decade beyond current instrumental capabilities will open up new insights into a variety of astrophysical source classes. Among these are magn
White dwarf stars constitute the final evolutionary stage for more than 95 per cent of all stars. The Galactic population of white dwarfs conveys a wealth of information about several fundamental issues and are of vital importance to study the struct
Accurate atomic data is an essential ingredient for the calculation of reliable non-local thermodynamic equilibrium (NLTE) model atmospheres that are mandatory for the spectral analysis of hot stars. We aim to search for and identify for the first ti