ﻻ يوجد ملخص باللغة العربية
An accurate and efficient method dealing with the few-body dynamics is important for simulating collisional N-body systems like star clusters and to follow the formation and evolution of compact binaries. We describe such a method which combines the time-transformed explicit symplectic integrator (Preto & Tremaine 1999; Mikkola & Tanikawa 1999) and the slow-down method (Mikkola & Aarseth 1996). The former conserves the Hamiltonian and the angular momentum for a long-term evolution, while the latter significantly reduces the computational cost for a weakly perturbed binary. In this work, the Hamilton equations of this algorithm are analyzed in detail. We mathematically and numerically show that it can correctly reproduce the secular evolution like the orbit averaged method and also well conserve the angular momentum. For a weakly perturbed binary, the method is possible to provide a few order of magnitude faster performance than the classical algorithm. A publicly available code written in the c++ language, SDAR, is available on GitHub (https://github.com/lwang-astro/SDAR). It can be used either as a stand alone tool or a library to be plugged in other $N$-body codes. The high precision of the floating point to 62 digits is also supported.
We present a new symplectic integrator designed for collisional gravitational $N$-body problems which makes use of Kepler solvers. The integrator is also reversible and conserves 9 integrals of motion of the $N$-body problem to machine precision. The
SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging o
Occurring in protoplanetary discs composed of dust and gas, streaming instabilities are a favoured mechanism to drive the formation of planetesimals. The Polydispserse Streaming Instability is a generalisation of the Streaming Instability to a contin
When fitting N-body models to astronomical data - including transit times, radial velocity, and astrometric positions at observed times - the derivatives of the model outputs with respect to the initial conditions can help with model optimization and
Given a light source, a spherical reflector, and an observer, where on the surface of the sphere will the light be directly reflected to the observer, i.e. where is the the specular point? This is known as the Alhazen-Ptolemy problem, and finding thi