ترغب بنشر مسار تعليمي؟ اضغط هنا

Shock Drift Acceleration of Ions in an Interplanetary Shock Observed by MMS

64   0   0.0 ( 0 )
 نشر من قبل Elizabeth (Lily) Hanson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An interplanetary (IP) shock wave was recorded crossing the Magnetospheric Multiscale (MMS) constellation on 2018 January 8. Plasma measurements upstream of the shock indicate efficient proton acceleration in the IP shock ramp: 2-7 keV protons are observed upstream for about three minutes (~8000 km) ahead of the IP shock ramp, outrunning the upstream waves. The differential energy flux (DEF) of 2-7 keV protons decays slowly with distance from the ramp towards the upstream region (dropping by about half within 8 Earth radii from the ramp) and is lessened by a factor of about four in the downstream compared to the ramp (within a distance comparable to the gyroradius of ~keV protons). Comparison with test-particle simulations has confirmed that the mechanism accelerating the solar wind protons and injecting them upstream is classical shock drift acceleration. This example of observed proton acceleration by a low-Mach, quasi-perpendicular shock may be applicable to astrophysical contexts, such as supernova remnants or the acceleration of cosmic rays.



قيم البحث

اقرأ أيضاً

Non-thermal pickup ions (PUIs) are created in the solar wind (SW) by charge-exchange between SW ions (SWIs) and slow interstellar neutral atoms. It has long been theorized, but not directly observed, that PUIs should be preferentially heated at quasi -perpendicular shocks compared to thermal SWIs. We present in situ observations of interstellar hydrogen (H+) PUIs at an interplanetary shock by the New Horizons Solar Wind Around Pluto (SWAP) instrument at ~34 au from the Sun. At this shock, H+ PUIs are only a few percent of the total proton density but contain most of the internal particle pressure. A gradual reduction in SW flow speed and simultaneous heating of H+ SWIs is observed ahead of the shock, suggesting an upstream energetic particle pressure gradient. H+ SWIs lose ~85% of their energy flux across the shock and H+ PUIs are preferentially heated. Moreover, a PUI tail is observed downstream of the shock, such that the energy flux of all H+ PUIs is approximately six times that of H+ SWIs. We find that H+ PUIs, including their suprathermal tail, contain almost half of the total downstream energy flux in the shock frame.
Studies of shocks have long suggested that a shock can undergo cyclically self-reformation in a time scale of ion cyclotron period. This process has been proposed as a primary mechanism for energy dissipation and energetic particle acceleration at sh ocks. Unambiguous observational evidence, however, has remained elusive. Here, we report direct observations for the self-reformation process of a collisionless, high Mach number, quasi-perpendicular shock using MMS measurements. We find that reflected ions by the old shock ramp form a clear phase-space vortex, which gives rise to a new ramp. The new ramp observed by MMS2 has not yet developed to a mature stage during the self-reformation, and is not strong enough to reflect incident ions. Consequently, these ions are only slightly slowed down and show a flat velocity profile from the new ramp all the way to the old one. The present results provide direct evidence for shock self-reformation, and also shed light on energy dissipation and energetic particle acceleration at collisionless shocks throughout the universe.
We derive fast forward interplanetary (IP) shock speeds and impact angles to study the geoeffectivness of 461 IP shocks that occurred from January 1995 to December 2013 using ACE and WIND spacecraft data. The geomagnetic activity is inferred from the SuperMAG project data. SuperMAG is a large chain which employs more than 300 ground stations to compute enhanc
93 - F.-J. Kong , G. Qin 2019
The acceleration of suprathermal electrons in the solar wind is mainly associated with shocks driven by interplanetary coronal mass ejections (ICMEs). It is well known that the acceleration of electrons is much more efficient at quasi-perpendicular s hocks than at quasi-parallel ones. Yang et al. (2018, ApJ, 853, 89) (hereafter YEA2018) studied the acceleration of suprathermal electrons at a quasi-perpendicular ICME-driven shock event to claim the important role of shock drift acceleration (SDA). Here, we perform test-particle simulations to study the acceleration of electrons in this event, by calculating the downstream electron intensity distribution for all energy channels assuming an initial distribution based on the averaged upstream intensities. We obtain simulation results similar to the observations from YEA2018 as follows. It is shown that the ratio of downstream to upstream intensities peaks at about 90$^circ$ pitch angle. In addition, in each pitch angle direction the downstream electron energy spectral index is much larger than the theoretical index of diffusive shock acceleration. Furthermore, considering SDA, the estimated drift length is proportional to the electron energy but the drift time is almost energy independent. Finally, we use a theoretical model based on SDA to describe the drift length and time, especially, to explain their energy dependence. These results indicate the importance of SDA in the acceleration of electrons by quasi-perpendicular shocks.
89 - T. Amano , T. Katou , N. Kitamura 2020
The first-order Fermi acceleration of electrons requires an injection of electrons into a mildly relativistic energy range. However, the mechanism of injection has remained a puzzle both in theory and observation. We present direct evidence for a nov el stochastic shock drift acceleration theory for the injection obtained with Magnetospheric Multiscale (MMS) observations at Earths bow shock. The theoretical model can explain electron acceleration to mildly relativistic energies at high-speed astrophysical shocks, which may provide a solution to the long-standing issue of electron injection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا