ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational Evidence for Stochastic Shock Drift Acceleration of Electrons at the Earths Bow Shock

90   0   0.0 ( 0 )
 نشر من قبل Takanobu Amano
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The first-order Fermi acceleration of electrons requires an injection of electrons into a mildly relativistic energy range. However, the mechanism of injection has remained a puzzle both in theory and observation. We present direct evidence for a novel stochastic shock drift acceleration theory for the injection obtained with Magnetospheric Multiscale (MMS) observations at Earths bow shock. The theoretical model can explain electron acceleration to mildly relativistic energies at high-speed astrophysical shocks, which may provide a solution to the long-standing issue of electron injection.



قيم البحث

اقرأ أيضاً

The analysis of the wave content inside a perpendicular bow shock indicates that heating of ions is related to the Lower-Hybrid-Drift (LHD) instability, and heating of electrons to the Electron-Cyclotron-Drift (ECD) instability. Both processes repres ent stochastic acceleration caused by the electric field gradients on the electron gyroradius scales, produced by the two instabilities. Stochastic heating is a single particle mechanism where large gradients break adiabatic invariants and expose particles to direct acceleration by the DC- and wave-fields. The acceleration is controlled by function $chi = m_iq_i^{-1} B^{-2}$div($mathbf{E}$), which represents a general diagnostic tool for processes of energy transfer between electromagnetic fields and particles, and the measure of the local charge non-neutrality. The identification was made with multipoint measurements obtained from the Magnetospheric Multiscale spacecraft (MMS). The source for the LHD instability is the diamagnetic drift of ions, and for the ECD instability the source is ExB drift of electrons. The conclusions are supported by laboratory diagnostics of the ECD instability in Hall ion thrusters.
Solar wind plasma at the Earths orbit carries transient magnetic field structures including discontinuities. Their interaction with the Earths bow shock can significantly alter discontinuity configuration and stability. We investigate such an interac tion for the most widespread type of solar wind discontinuities - rotational discontinuities (RDs). We use a set of in situ multispacecraft observations and perform kinetic hybrid simulations. We focus on the RD current density amplification that may lead to magnetic reconnection. We show that the amplification can be as high as two orders of magnitude and is mainly governed by three processes: the transverse magnetic field compression, global thinning of RD, and interaction of RD with low-frequency electromagnetic waves in the magnetosheath, downstream of the bow shock. The first factor is found to substantially exceed simple hydrodynamic predictions in most observed cases, the second effect has a rather moderate impact, while the third causes strong oscillations of the current density. We show that the presence of accelerated particles in the bow shock precursor highly boosts the current density amplification, making the postshock magnetic reconnection more probable. The pool of accelerated particles strongly affects the interaction of RDs with the Earths bow shock, as it is demonstrated by observational data analysis and hybrid code simulations. Thus, shocks should be distinguished not by the inclination angle, but rather by the presence of foreshocks populated with shock reflected particles. Plasma processes in the RD-shock interaction affect magnetic structures and turbulence in the Earths magnetosphere and may have implications for the processes in astrophysics.
188 - M. Lemoine 2014
This paper summarizes recent progresses in our theoretical understanding of particle acceleration at relativistic shock waves and it discusses two salient consequences: (1) the maximal energy of accelerated particles; (2) the impact of the shock-gene rated micro-turbulence on the multi-wavelength light curves of gamma-ray burst afterglows.
We report evidence of magnetic reconnection in the transition region of the terrestrial bow shock when the angle between the shock normal and the immediate upstream magnetic field is 65 degrees. An ion-skin-depth-scale current sheet exhibits the Hall current and field pattern, electron outflow jet, and enhanced energy conversion rate through the nonideal electric field, all consistent with a reconnection diffusion region close to the X-line. In the diffusion region, electrons are modulated by electromagnetic waves. An ion exhaust with energized field-aligned ions and electron parallel heating are observed in the same shock transition region. The energized ions are more separated from the inflowing ions in velocity above the current sheet than below, possibly due to the shear flow between the two inflow regions. The observation suggests that magnetic reconnection may contribute to shock energy dissipation.
The propagation of Langmuir waves in plasmas is known to be sensitive to density fluctuations. Such fluctuations may lead to the coexistence of wave pairs that have almost opposite wave-numbers in the vicinity of their reflection points. Using high f requency electric field measurements from the WIND satellite, we determine for the first time the wavelength of intense Langmuir wave packets that are generated upstream of the Earths electron foreshock by energetic electron beams. Surprisingly, the wavelength is found to be 2 to 3 times larger than the value expected from standard theory. These values are consistent with the presence of strong inhomogeneities in the solar wind plasma rather than with the effect of weak beam instabilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا