ﻻ يوجد ملخص باللغة العربية
[Abridged] Although galaxies are found to follow a tight relation between their star formation rate and stellar mass, they are expected to exhibit complex star formation histories (SFH), with short-term fluctuations. The goal of this pilot study is to present a method that will identify galaxies that are undergoing a strong variation of star formation activity in the last tens to hundreds Myr. In other words, the proposed method will determine whether a variation in the last few hundreds of Myr of the SFH is needed to properly model the SED rather than a smooth normal SFH. To do so, we analyze a sample of COSMOS galaxies using high signal-to-noise ratio broad band photometry. We apply Approximate Bayesian Computation, a state-of-the-art statistical method to perform model choice, associated to machine learning algorithms to provide the probability that a flexible SFH is preferred based on the observed flux density ratios of galaxies. We present the method and test it on a sample of simulated SEDs. The input information fed to the algorithm is a set of broadband UV to NIR (rest-frame) flux ratios for each galaxy. The method has an error rate of 21% in recovering the right SFH and is sensitive to SFR variations larger than 1 dex. A more traditional SED fitting method using CIGALE is tested to achieve the same goal, based on fits comparisons through Bayesian Information Criterion but the best error rate obtained is higher, 28%. We apply our new method to the COSMOS galaxies sample. The stellar mass distribution of galaxies with a strong to decisive evidence against the smooth delayed-$tau$ SFH peaks at lower M* compared to galaxies where the smooth delayed-$tau$ SFH is preferred. We discuss the fact that this result does not come from any bias due to our training. Finally, we argue that flexible SFHs are needed to be able to cover that largest SFR-M* parameter space possible.
We derive the optimal proposal density for Approximate Bayesian Computation (ABC) using Sequential Monte Carlo (SMC) (or Population Monte Carlo, PMC). The criterion for optimality is that the SMC/PMC-ABC sampler maximise the effective number of sampl
Approximate Bayesian computation (ABC) is computationally intensive for complex model simulators. To exploit expensive simulations, data-resampling via bootstrapping can be employed to obtain many artificial datasets at little cost. However, when usi
Approximate Bayesian computation methods are useful for generative models with intractable likelihoods. These methods are however sensitive to the dimension of the parameter space, requiring exponentially increasing resources as this dimension grows.
We use HST observations from the Legacy Extragalactic UV Survey to reconstruct the recent star formation histories (SFHs) of three actively star-forming dwarf galaxies, NGC4449, Holmberg II and NGC1705, from their UV color-magnitude diagrams (CMDs).
We have obtained the time and space-resolved star formation history (SFH) of M51a (NGC 5194) by fitting GALEX, SDSS, and near infrared pixel-by-pixel photometry to a comprehensive library of stellar population synthesis models drawn from the Syntheti