ﻻ يوجد ملخص باللغة العربية
Approximate Bayesian computation (ABC) is computationally intensive for complex model simulators. To exploit expensive simulations, data-resampling via bootstrapping can be employed to obtain many artificial datasets at little cost. However, when using this approach within ABC, the posterior variance is inflated, thus resulting in biased posterior inference. Here we use stratified Monte Carlo to considerably reduce the bias induced by data resampling. We also show empirically that it is possible to obtain reliable inference using a larger than usual ABC threshold. Finally, we show that with stratified Monte Carlo we obtain a less variable ABC likelihood. Ultimately we show how our approach improves the computational efficiency of the ABC samplers. We construct several ABC samplers employing our methodology, such as rejection and importance ABC samplers, and ABC-MCMC samplers. We consider simulation studies for static (Gaussian, g-and-k distribution, Ising model, astronomical model) and dynamic models (Lotka-Volterra). We compare against state-of-art sequential Monte Carlo ABC samplers, synthetic likelihoods, and likelihood-free Bayesian optimization. For a computationally expensive Lotka-Volterra case study, we found that our strategy leads to a more than 10-fold computational saving, compared to a sampler that does not use our novel approach.
Approximate Bayesian computation methods are useful for generative models with intractable likelihoods. These methods are however sensitive to the dimension of the parameter space, requiring exponentially increasing resources as this dimension grows.
We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood function with the novelty of usin
Approximate Bayesian computation (ABC) or likelihood-free inference algorithms are used to find approximations to posterior distributions without making explicit use of the likelihood function, depending instead on simulation of sample data sets from
We derive the optimal proposal density for Approximate Bayesian Computation (ABC) using Sequential Monte Carlo (SMC) (or Population Monte Carlo, PMC). The criterion for optimality is that the SMC/PMC-ABC sampler maximise the effective number of sampl
The Bayesian statistical paradigm uses the language of probability to express uncertainty about the phenomena that generate observed data. Probability distributions thus characterize Bayesian analysis, with the rules of probability used to transform