ترغب بنشر مسار تعليمي؟ اضغط هنا

Stratified sampling and bootstrapping for approximate Bayesian computation

164   0   0.0 ( 0 )
 نشر من قبل Umberto Picchini
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Approximate Bayesian computation (ABC) is computationally intensive for complex model simulators. To exploit expensive simulations, data-resampling via bootstrapping can be employed to obtain many artificial datasets at little cost. However, when using this approach within ABC, the posterior variance is inflated, thus resulting in biased posterior inference. Here we use stratified Monte Carlo to considerably reduce the bias induced by data resampling. We also show empirically that it is possible to obtain reliable inference using a larger than usual ABC threshold. Finally, we show that with stratified Monte Carlo we obtain a less variable ABC likelihood. Ultimately we show how our approach improves the computational efficiency of the ABC samplers. We construct several ABC samplers employing our methodology, such as rejection and importance ABC samplers, and ABC-MCMC samplers. We consider simulation studies for static (Gaussian, g-and-k distribution, Ising model, astronomical model) and dynamic models (Lotka-Volterra). We compare against state-of-art sequential Monte Carlo ABC samplers, synthetic likelihoods, and likelihood-free Bayesian optimization. For a computationally expensive Lotka-Volterra case study, we found that our strategy leads to a more than 10-fold computational saving, compared to a sampler that does not use our novel approach.



قيم البحث

اقرأ أيضاً

Approximate Bayesian computation methods are useful for generative models with intractable likelihoods. These methods are however sensitive to the dimension of the parameter space, requiring exponentially increasing resources as this dimension grows. To tackle this difficulty, we explore a Gibbs version of the ABC approach that runs component-wise approximate Bayesian computation steps aimed at the corresponding conditional posterior distributions, and based on summary statistics of reduced dimensions. While lacking the standard justifications for the Gibbs sampler, the resulting Markov chain is shown to converge in distribution under some partial independence conditions. The associated stationary distribution can further be shown to be close to the true posterior distribution and some hierarchic
We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation-maximization (SAEM) algorithm to maximize the likelihood function with the novelty of usin g approximate Bayesian computation (ABC) within SAEM. The task is to provide each iteration of SAEM with a filtered state of the system, and this is achieved using an ABC sampler for the hidden state, based on sequential Monte Carlo (SMC) methodology. It is shown that the resulting SAEM-ABC algorithm can be calibrated to return accurate inference, and in some situations it can outperform a version of SAEM incorporating the bootstrap filter. Two simulation studies are presented, first a nonlinear Gaussian state-space model then a state-space model having dynamics expressed by a stochastic differential equation. Comparisons with iterated filtering for maximum likelihood inference, and Gibbs sampling and particle marginal methods for Bayesian inference are presented.
Approximate Bayesian computation (ABC) or likelihood-free inference algorithms are used to find approximations to posterior distributions without making explicit use of the likelihood function, depending instead on simulation of sample data sets from the model. In this paper we show that under the assumption of the existence of a uniform additive model error term, ABC algorithms give exact results when sufficient summaries are used. This interpretation allows the approximation made in many previous application papers to be understood, and should guide the choice of metric and tolerance in future work. ABC algorithms can be generalized by replacing the 0-1 cut-off with an acceptance probability that varies with the distance of the simulated data from the observed data. The acceptance density gives the distribution of the error term, enabling the uniform error usually used to be replaced by a general distribution. This generalization can also be applied to approximate Markov chain Monte Carlo algorithms. In light of this work, ABC algorithms can be seen as calibration techniques for implicit stochastic models, inferring parameter values in light of the computer model, data, prior beliefs about the parameter values, and any measurement or model errors.
We derive the optimal proposal density for Approximate Bayesian Computation (ABC) using Sequential Monte Carlo (SMC) (or Population Monte Carlo, PMC). The criterion for optimality is that the SMC/PMC-ABC sampler maximise the effective number of sampl es per parameter proposal. The optimal proposal density represents the optimal trade-off between favoring high acceptance rate and reducing the variance of the importance weights of accepted samples. We discuss two convenient approximations of this proposal and show that the optimal proposal density gives a significant boost in the expected sampling efficiency compared to standard kernels that are in common use in the ABC literature, especially as the number of parameters increases.
140 - Gael M. Martin , 2020
The Bayesian statistical paradigm uses the language of probability to express uncertainty about the phenomena that generate observed data. Probability distributions thus characterize Bayesian analysis, with the rules of probability used to transform prior probability distributions for all unknowns - parameters, latent variables, models - into posterior distributions, subsequent to the observation of data. Conducting Bayesian analysis requires the evaluation of integrals in which these probability distributions appear. Bayesian computation is all about evaluating such integrals in the typical case where no analytical solution exists. This paper takes the reader on a chronological tour of Bayesian computation over the past two and a half centuries. Beginning with the one-dimensional integral first confronted by Bayes in 1763, through to recent problems in which the unknowns number in the millions, we place all computational problems into a common framework, and describe all computational methods using a common notation. The aim is to help new researchers in particular - and more generally those interested in adopting a Bayesian approach to empirical work - make sense of the plethora of computational techniques that are now on offer; understand when and why different methods are useful; and see the links that do exist, between them all.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا