ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the fidelity of simulations of black hole - galaxy co-evolution at z ~ 1.5 with observations

209   0   0.0 ( 0 )
 نشر من قبل Xuheng Ding
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the scaling relations between the mass of a supermassive black hole (SMBH) and its host galaxy properties at $1.2<z<1.7$ using both observational data and simulations. Recent measurements of 32 X-ray-selected broad-line Active Galactic Nucleus (AGNs) are compared with two independent state-of-the-art efforts, including the hydrodynamic simulation MassiveBlackII (MBII) and a semi-analytic model (SAM). After applying an observational selection function to the simulations, we find that both MBII and SAM agree well with the data, in terms of the central distribution. However, the dispersion in the mass ratio between black hole mass and stellar mass is significantly more consistent with the MBII prediction ($sim0.3~$dex), than with the SAM ($sim0.7~$dex), even when accounting for observational uncertainties. Hence, our observations can distinguish between the different recipes adopted in the models. The mass relations in the MBII are highly dependent on AGN feedback while the relations in the SAM are more sensitive to galaxy merger events triggering nuclear activity. Moreover, the intrinsic scatter in the mass ratio of our high-$z$ sample is comparable to that observed in the local sample, all but ruling out the proposed scenario the correlations are purely stochastic in nature arising from some sort of cosmic central limit theorem. Our results support the hypothesis of AGN feedback being responsible for a causal link between the SMBH and its host galaxy, resulting in a tight correlation between their respective masses.



قيم البحث

اقرأ أيضاً

124 - Kevin Schawinski 2012
The growth of black holes and the formation and evolution of galaxies appear to be linked at such a fundamental level that we think of the two as `co-evolving. Recent observations show that this co-evolution may be complex and the result of several d ifferent pathways. While it is clear that black hole accretion is linked to specific phases of the evolution of the host galaxy, the impact of the energy liberated by the black hole on the evolutionary trajectory of the host by feedback is less clear. In this contribution, I review the motivations for co-evolution, the current state of the observational picture, and some challenges by black hole feedback.
The co-evolution of supermassive black holes (SMBHs) with their host galaxies remains to be fully explored, especially at high redshift. While often understood as a consequence of self-regulation via AGN feedback, it may also be explained by alternat ive SMBH accretion models. Here, we expand on previous work by studying the growth of SMBHs with the help of a large suite of cosmological zoom-in simulations (textsc{small{MassiveFIRE}}) that are part of the Feedback in Realistic Environments (FIRE) project. The growth of SMBHs is modeled in post-processing with different accretion models, placements, and merger treatments, and validated by comparing to on-the-fly calculations. Scaling relations predicted by the gravitational torque driven accretion (GTDA) model agree with observations at low redshift emph{without} the need for AGN feedback, in contrast to models in which the accretion rate depends strongly on SMBH mass. At high redshift, we find deviations from the local scaling relations in line with previous results. In particular, SMBHs are under-massive, presumably due to stellar feedback, but start to grow efficiently once their host galaxies reach $M_* sim 10^{10} M_{odot}$. We analyze and explain these findings in the context of a simple analytic model. Finally, we show that the predicted scaling relations depend sensitively on the efficiency of SMBH merging. These findings highlight the relevance of understanding the evolution of SMBH-galaxy scaling relations to predict the rate of gravitational wave signals from SMBH mergers across cosmic history.
We present new gas kinematic observations with the OSIRIS instrument at the GTC for galaxies in the Cl1604 cluster system at z=0.9. These observations together with a collection of other cluster samples at different epochs analyzed by our group are u sed to study the evolution of the Tully-Fisher, velocity-size and stellar mass-angular momentum relations in dense environments over cosmic time. We use 2D and 3D spectroscopy to analyze the kinematics of our cluster galaxies and extract their maximum rotation velocities (Vmax). Our methods are consistently applied to all our cluster samples which make them ideal for an evolutionary comparison. Up to redshift one, our cluster samples show evolutionary trends compatible with previous observational results in the field and in accordance with semianalytical models and hydrodynamical simulations concerning the Tully-Fisher and velocity-size relations. However, we find a factor 3 drop in disk sizes and an average B-band luminosity enhancement of 2 mag by z=1.5. We discuss the role that different cluster-specific interactions may play in producing this observational result. In addition, we find that our intermediate-to-high redshift cluster galaxies follow parallel sequences with respect to the local specific angular momentum-stellar mass relation, although displaying lower angular momentum values in comparison with field samples at similar redshifts. This can be understood by the stronger interacting nature of dense environments with respect to the field.
Galaxy clusters are excellent probes to study the effect of environment on galaxy formation and evolution. Along with high-quality observational data, accurate cosmological simulations are required to improve our understanding of galaxy evolution in these systems. In this work, we compare state-of-the-art observational data of massive galaxy clusters ($>10^{14} textrm{M}_{odot}$) at different redshifts ($0<z<1.5$) with predictions from the Hydrangea suite of cosmological hydrodynamic simulations of 24 massive galaxy clusters ($>10^{14} textrm{M}_{odot}$ at $z=0$). We compare three fundamental observables of galaxy clusters: the total stellar mass to halo mass ratio, the stellar mass function (SMF), and the radial mass density profile of the cluster galaxies. In the first two of these, the simulations agree well with the observations, albeit with a slightly too high abundance of $M_star lesssim 10^{10} textrm{M}_{odot}$ galaxies at $z gtrsim 1$. The NFW concentrations of cluster galaxies increase with redshift, in contrast to the decreasing dark matter halo concentrations. This previously observed behaviour is therefore due to a qualitatively different assembly of the smooth DM halo compared to the satellite population. Quantitatively, we however find a discrepancy in that the simulations predict higher stellar concentrations than observed at lower redshifts ($z<0.3$), by a factor of $approx$2. This may be due to selection bias in the simulations, or stem from shortcomings in the build-up and stripping of their inner satellite halo.
This is the third paper in a series describing the spectroscopic properties of a sample of 39 AGN at $z sim 1.5$, selected to cover a large range in black hole mass ($M_{BH}$) and Eddington ratio ($L/L_{Edd}$). In this paper, we continue the analysis of the VLT/X-shooter observations of our sample with the addition of 9 new sources. We use an improved Bayesian procedure, which takes into account intrinsic reddening, and improved $M_{BH}$ estimates, to fit thin accretion disc (AD) models to the observed spectra and constrain the spin parameter ($a_*$) of the central black holes. We can fit 37 out of 39 AGN with the thin AD model, and for those with satisfactory fits, we obtain constraints on the spin parameter of the BHs, with the constraints becoming generally less well defined with decreasing BH mass. Our spin parameter estimates range from $sim$$-$0.6 to maximum spin for our sample, and our results are consistent with the spin-up scenario of BH spin evolution. We also discuss how the results of our analysis vary with the inclusion of non-simultaneous GALEX photometry in our thin AD fitting. Simultaneous spectra covering the rest-frame optical through far-UV are necessary to definitively test the thin AD theory and obtain the best constraints on the spin parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا