ترغب بنشر مسار تعليمي؟ اضغط هنا

KoGuN: Accelerating Deep Reinforcement Learning via Integrating Human Suboptimal Knowledge

97   0   0.0 ( 0 )
 نشر من قبل Peng Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reinforcement learning agents usually learn from scratch, which requires a large number of interactions with the environment. This is quite different from the learning process of human. When faced with a new task, human naturally have the common sense and use the prior knowledge to derive an initial policy and guide the learning process afterwards. Although the prior knowledge may be not fully applicable to the new task, the learning process is significantly sped up since the initial policy ensures a quick-start of learning and intermediate guidance allows to avoid unnecessary exploration. Taking this inspiration, we propose knowledge guided policy network (KoGuN), a novel framework that combines human prior suboptimal knowledge with reinforcement learning. Our framework consists of a fuzzy rule controller to represent human knowledge and a refine module to fine-tune suboptimal prior knowledge. The proposed framework is end-to-end and can be combined with existing policy-based reinforcement learning algorithm. We conduct experiments on both discrete and continuous control tasks. The empirical results show that our approach, which combines human suboptimal knowledge and RL, achieves significant improvement on learning efficiency of flat RL algorithms, even with very low-performance human prior knowledge.

قيم البحث

اقرأ أيضاً

There has been a recent explosion in the capabilities of game-playing artificial intelligence. Many classes of tasks, from video games to motor control to board games, are now solvable by fairly generic algorithms, based on deep learning and reinforc ement learning, that learn to play from experience with minimal prior knowledge. However, these machines often do not win through intelligence alone -- they possess vastly superior speed and precision, allowing them to act in ways a human never could. To level the playing field, we restrict the machines reaction time to a human level, and find that standard deep reinforcement learning methods quickly drop in performance. We propose a solution to the action delay problem inspired by human perception -- to endow agents with a neural predictive model of the environment which undoes the delay inherent in their environment -- and demonstrate its efficacy against professional players in Super Smash Bros. Melee, a popular console fighting game.
AI systems are increasingly applied to complex tasks that involve interaction with humans. During training, such systems are potentially dangerous, as they havent yet learned to avoid actions that could cause serious harm. How can an AI system explor e and learn without making a single mistake that harms humans or otherwise causes serious damage? For model-free reinforcement learning, having a human in the loop and ready to intervene is currently the only way to prevent all catastrophes. We formalize human intervention for RL and show how to reduce the human labor required by training a supervised learner to imitate the humans intervention decisions. We evaluate this scheme on Atari games, with a Deep RL agent being overseen by a human for four hours. When the class of catastrophes is simple, we are able to prevent all catastrophes without affecting the agents learning (whereas an RL baseline fails due to catastrophic forgetting). However, this scheme is less successful when catastrophes are more complex: it reduces but does not eliminate catastrophes and the supervised learner fails on adversarial examples found by the agent. Extrapolating to more challenging environments, we show that our implementation would not scale (due to the infeasible amount of human labor required). We outline extensions of the scheme that are necessary if we are to train model-free agents without a single catastrophe.
This paper aims to examine the potential of using the emerging deep reinforcement learning techniques in flight control. Instead of learning from scratch, we suggest to leverage domain knowledge available in learning to improve learning efficiency an d generalisability. More specifically, the proposed approach fixes the autopilot structure as typical three-loop autopilot and deep reinforcement learning is utilised to learn the autopilot gains. To solve the flight control problem, we then formulate a Markovian decision process with a proper reward function that enable the application of reinforcement learning theory. Another type of domain knowledge is exploited for defining the reward function, by shaping reference inputs in consideration of important control objectives and using the shaped reference inputs in the reward function. The state-of-the-art deep deterministic policy gradient algorithm is utilised to learn an action policy that maps the observed states to the autopilot gains. Extensive empirical numerical simulations are performed to validate the proposed computational control algorithm.
187 - Dattaraj Rao 2019
Traditional Reinforcement Learning (RL) problems depend on an exhaustive simulation environment that models real-world physics of the problem and trains the RL agent by observing this environment. In this paper, we present a novel approach to creatin g an environment by modeling the reward function based on empirical rules extracted from human domain knowledge of the system under study. Using this empirical rewards function, we will build an environment and train the agent. We will first create an environment that emulates the effect of setting cabin temperature through thermostat. This is typically done in RL problems by creating an exhaustive model of the system with detailed thermodynamic study. Instead, we propose an empirical approach to model the reward function based on human domain knowledge. We will document some rules of thumb that we usually exercise as humans while setting thermostat temperature and try and model these into our reward function. This modeling of empirical human domain rules into a reward function for RL is the unique aspect of this paper. This is a continuous action space problem and using deep deterministic policy gradient (DDPG) method, we will solve for maximizing the reward function. We will create a policy network that predicts optimal temperature setpoint given external temperature and humidity.
Many real-world applications involve teams of agents that have to coordinate their actions to reach a common goal against potential adversaries. This paper focuses on zero-sum games where a team of players faces an opponent, as is the case, for examp le, in Bridge, collusion in poker, and collusion in bidding. The possibility for the team members to communicate before gameplay---that is, coordinate their strategies ex ante---makes the use of behavioral strategies unsatisfactory. We introduce Soft Team Actor-Critic (STAC) as a solution to the teams coordination problem that does not require any prior domain knowledge. STAC allows team members to effectively exploit ex ante communication via exogenous signals that are shared among the team. STAC reaches near-optimal coordinated strategies both in perfectly observable and partially observable games, where previous deep RL algorithms fail to reach optimal coordinated behaviors.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا