ﻻ يوجد ملخص باللغة العربية
A new upper limit on the 21-cm signal power spectrum at a redshift of $z approx 9.1$ is presented, based on 141 hours of data obtained with the Low-Frequency Array (LOFAR). The analysis includes significant improvements in spectrally-smooth gain-calibration, Gaussian Process Regression (GPR) foreground mitigation and optimally-weighted power spectrum inference. Previously seen `excess power due to spectral structure in the gain solutions has markedly reduced but some excess power still remains with a spectral correlation distinct from thermal noise. This excess has a spectral coherence scale of $0.25 - 0.45$,MHz and is partially correlated between nights, especially in the foreground wedge region. The correlation is stronger between nights covering similar local sidereal times. A best 2-$sigma$ upper limit of $Delta^2_{21} < (73)^2,mathrm{mK^2}$ at $k = 0.075,mathrm{h,cMpc^{-1}}$ is found, an improvement by a factor $approx 8$ in power compared to the previously reported upper limit. The remaining excess power could be due to residual foreground emission from sources or diffuse emission far away from the phase centre, polarization leakage, chromatic calibration errors, ionosphere, or low-level radio-frequency interference. We discuss future improvements to the signal processing chain that can further reduce or even eliminate these causes of excess power.
Using the latest upper limits on the 21-cm power spectrum at $zapprox9.1$ from the Low Frequency Array (LOFAR), we explore regions of parameter space which are inconsistent with the data. We use 21CMMC, a Monte Carlo Markov Chain sampler of 21cmFAST
We present the first limits on the Epoch of Reionization (EoR) 21-cm HI power spectra, in the redshift range $z=7.9-10.6$, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total 13,h of data were used from observations centred on the
We present upper limits on the 21 cm power spectrum at $z = 5.9$ calculated from the model-independent limit on the neutral fraction of the intergalactic medium of $x_{rm H{small I }} < 0.06 + 0.05 (1sigma)$ derived from dark pixel statistics of quas
Observations of the redshifted 21-cm hyperfine line of neutral hydrogen from early phases of the Universe such as Cosmic Dawn and the Epoch of Reionization promise to open a new window onto the early formation of stars and galaxies. We present the fi
We report upper-limits on the Epoch of Reionization (EoR) 21 cm power spectrum at redshifts 7.9 and 10.4 with 18 nights of data ($sim36$ hours of integration) from Phase I of the Hydrogen Epoch of Reionization Array (HERA). The Phase I data show evid