ترغب بنشر مسار تعليمي؟ اضغط هنا

Upper limits on the 21-cm Epoch of Reionization power spectrum from one night with LOFAR

242   0   0.0 ( 0 )
 نشر من قبل L. V. E. Koopmans
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first limits on the Epoch of Reionization (EoR) 21-cm HI power spectra, in the redshift range $z=7.9-10.6$, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total 13,h of data were used from observations centred on the North Celestial Pole (NCP). After subtraction of the sky model and the noise bias, we detect a non-zero $Delta^2_{rm I} = (56 pm 13 {rm mK})^2$ (1-$sigma$) excess variance and a best 2-$sigma$ upper limit of $Delta^2_{rm 21} < (79.6 {rm mK})^2$ at $k=0.053$$h$cMpc$^{-1}$ in the range $z=$9.6-10.6. The excess variance decreases when optimizing the smoothness of the direction- and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (i) residual side-lobe noise on calibration baselines, (ii) leverage due to non-linear effects, (iii) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.

قيم البحث

اقرأ أيضاً

We report upper-limits on the Epoch of Reionization (EoR) 21 cm power spectrum at redshifts 7.9 and 10.4 with 18 nights of data ($sim36$ hours of integration) from Phase I of the Hydrogen Epoch of Reionization Array (HERA). The Phase I data show evid ence for systematics that can be largely suppressed with systematic models down to a dynamic range of $sim10^9$ with respect to the peak foreground power. This yields a 95% confidence upper limit on the 21 cm power spectrum of $Delta^2_{21} le (30.76)^2 {rm mK}^2$ at $k=0.192 h {rm Mpc}^{-1}$ at $z=7.9$, and also $Delta^2_{21} le (95.74)^2 {rm mK}^2$ at $k=0.256 h {rm Mpc}^{-1}$ at $z=10.4$. At $z=7.9$, these limits are the most sensitive to-date by over an order of magnitude. While we find evidence for residual systematics at low line-of-sight Fourier $k_parallel$ modes, at high $k_parallel$ modes we find our data to be largely consistent with thermal noise, an indicator that the system could benefit from deeper integrations. The observed systematics could be due to radio frequency interference, cable sub-reflections, or residual instrumental cross-coupling, and warrant further study. This analysis emphasizes algorithms that have minimal inherent signal loss, although we do perform a careful accounting in a companion paper of the small forms of loss or bias associated with the pipeline. Overall, these results are a promising first step in the development of a tuned, instrument-specific analysis pipeline for HERA, particularly as Phase II construction is completed en route to reaching the full sensitivity of the experiment.
We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observati ons were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of $10^4$ mK on comoving scales $klesssim 0.5 h$Mpc$^{-1}$. This represents the first upper limits on the $21$ cm power spectrum fluctuations at redshifts $12lesssim z lesssim 18$ but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.
A new upper limit on the 21-cm signal power spectrum at a redshift of $z approx 9.1$ is presented, based on 141 hours of data obtained with the Low-Frequency Array (LOFAR). The analysis includes significant improvements in spectrally-smooth gain-cali bration, Gaussian Process Regression (GPR) foreground mitigation and optimally-weighted power spectrum inference. Previously seen `excess power due to spectral structure in the gain solutions has markedly reduced but some excess power still remains with a spectral correlation distinct from thermal noise. This excess has a spectral coherence scale of $0.25 - 0.45$,MHz and is partially correlated between nights, especially in the foreground wedge region. The correlation is stronger between nights covering similar local sidereal times. A best 2-$sigma$ upper limit of $Delta^2_{21} < (73)^2,mathrm{mK^2}$ at $k = 0.075,mathrm{h,cMpc^{-1}}$ is found, an improvement by a factor $approx 8$ in power compared to the previously reported upper limit. The remaining excess power could be due to residual foreground emission from sources or diffuse emission far away from the phase centre, polarization leakage, chromatic calibration errors, ionosphere, or low-level radio-frequency interference. We discuss future improvements to the signal processing chain that can further reduce or even eliminate these causes of excess power.
Spectral distortions in the cosmic microwave background over the 40--200~MHz band are imprinted by neutral hydrogen in the intergalactic medium prior to the end of reionization. This signal, produced in the redshift range $z = 6-34$ at the rest frame wavelength of 21 cm, has not been detected yet; and poor understanding of high redshift astrophysics results in a large uncertainty in the expected spectrum. The SARAS~2 radiometer was purposely designed to detect the sky-averaged 21-cm signal. The instrument, deployed at the Timbaktu Collective (Southern India) in April--June 2017, collected 63~hr of science data, which were examined for the presence of the cosmological 21-cm signal. In our previous work the first-light data from SARAS~2 radiometer were analyzed with Bayesian likelihood-ratio tests using $264$ plausible astrophysical scenarios. In this paper we re-examine the data using an improved analysis based on the frequentist approach and forward modeling. We show that SARAS~2 data rejects 27 models, out of which 25 are rejected at a significance $>5sigma$. All the rejected models share the scenario of inefficient heating of the primordial gas by the first population of X-ray sources along with rapid reionization.
73 - Botao Li 2019
Hemispherical power asymmetry has emerged as a new challenge to cosmology in early universe. While the cosmic microwave background (CMB) measurements indicated the asymmetry amplitude $A simeq 0.07$ at the CMB scale $k_{rm CMB}simeq 0.0045,{rm Mpc}^{ -1}$, the high-redshift quasar observations found no significant deviation from statistical isotropy. This conflict can be reconciled in some scale-dependent asymmetry models. We put forward a new parameterization of scale-dependent asymmetric power spectrum, inspired by a multi-speed inflation model. The 21-cm power spectrum from the epoch of reionization can be used to constrain the scale-dependent hemispherical asymmetry. We demonstrate that an optimum, multi-frequency observation by the Square Kilometre Array (SKA) Phase 2 can impose a constraint on the amplitude of the power asymmetry anomaly at the level of $Delta A simeq 0.2$ at $0.056 lesssim k_{rm 21cm} lesssim 0.15 ,{rm Mpc}^{-1}$. This limit may be further improved by an order of magnitude as $Delta A simeq 0.01$ with a cosmic variance limited experiment such as the Omniscope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا