ﻻ يوجد ملخص باللغة العربية
Quantifying temperature variations at the micron scale can provide new opportunities in optical sensing. In this paper, we present a novel approach using the temperature-dependent variations in fluorescence of rare-earth doped tellurite glass to provide a micron-scale image of temperature variations over a 200 micrometre field of view. We demonstrate the system by monitoring the evaporation of a water droplet and report a net temperature change of 7.04 K with a sensitivity of at least 0.12 K. These results establish the practicality of this confocal-based approach to provide high-resolution marker-free optical temperature sensing.
Diamond containing the negatively charged nitrogen-vacancy (NV) center is emerging as a significant new system for magnetometry. However, most NV sensors require microscopes to collect the fluorescence signals and are therefore limited to laboratory
Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonics applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique properti
Tellurite glass fibers with embedded nanodiamond are attractive materials for quantum photonic applications. Reducing the loss of these fibers in the 600-800 nm wavelength range of nanodiamond fluorescence is essential to exploit the unique propertie
Absorption spectra of Ni$^{2+}$ ions in 22WO$_3$--78TeO$_2$ tungstate-tellurite glass were studied and Ni$^{2+}$ extinction coefficient spectral dependence was derived in the 450 -- 2700 nm wavelength range. Computer modeling of the glass structure p
Color centers in solids are the fundamental constituents of a plethora of applications such as lasers, light emitting diodes and sensors, as well as the foundation of advanced quantum information and communication technologies. Their photoluminescenc