ﻻ يوجد ملخص باللغة العربية
Color centers in solids are the fundamental constituents of a plethora of applications such as lasers, light emitting diodes and sensors, as well as the foundation of advanced quantum information and communication technologies. Their photoluminescence properties are usually studied under Stokes excitation, in which the emitted photons are at a lower energy than the excitation ones. In this work, we explore the opposite Anti-Stokes process, where excitation is performed with lower energy photons. We report that the process is sufficiently efficient to excite even a single quantum system, namely the germanium-vacancy center in diamond. Consequently, we leverage the temperature-dependent, phonon-assisted mechanism to realize an all-optical nanoscale thermometry scheme that outperforms any homologous optical method employed to date. Our results frame a promising approach for exploring fundamental light-matter interactions in isolated quantum systems, and harness it towards the realization of practical nanoscale thermometry and sensing.
Photon-mediated coupling between distant matter qubits may enable secure communication over long distances, the implementation of distributed quantum computing schemes, and the exploration of new regimes of many-body quantum dynamics. Nanophotonic de
Hexagonal boron nitride (hBN) is gaining interest for potential applications in integrated quantum nanophotonics. Yet, to establish hBN as an integrated photonic platform several cornerstones must be established, including the integration and couplin
Solid-state quantum emitters are garnering a lot of attention due to their role in scalable quantum photonics. A notable majority of these emitters, however, exhibit spectral diffusion due to local, fluctuating electromagnetic fields. In this work, w
Nanoscale optical thermometry is a promising non-contact route for measuring local temperature with both high sensitivity and spatial resolution. In this work, we present a deterministic optical thermometry technique based on quantum emitters in nano
Efficient on-chip integration of single-photon emitters imposes a major bottleneck for applications of photonic integrated circuits in quantum technologies. Resonantly excited solid-state emitters are emerging as near-optimal quantum light sources, i