ترغب بنشر مسار تعليمي؟ اضغط هنا

Lifter Training and Sub-band Modeling for Computationally Efficient and High-Quality Voice Conversion Using Spectral Differentials

236   0   0.0 ( 0 )
 نشر من قبل Takaaki Saeki
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose computationally efficient and high-quality methods for statistical voice conversion (VC) with direct waveform modification based on spectral differentials. The conventional method with a minimum-phase filter achieves high-quality conversion but requires heavy computation in filtering. This is because the minimum phase using a fixed lifter of the Hilbert transform often results in a long-tap filter. One of our methods is a data-driven method for lifter training. Since this method takes filter truncation into account in training, it can shorten the tap length of the filter while preserving conversion accuracy. Our other method is sub-band processing for extending the conventional method from narrow-band (16 kHz) to full-band (48 kHz) VC, which can convert a full-band waveform with higher converted-speech quality. Experimental results indicate that 1) the proposed lifter-training method for narrow-band VC can shorten the tap length to 1/16 without degrading the converted-speech quality and 2) the proposed sub-band-processing method for full-band VC can improve the converted-speech quality than the conventional method.



قيم البحث

اقرأ أيضاً

100 - Zheng Lian , Zhengqi Wen 2019
In a typical voice conversion system, prior works utilize various acoustic features (e.g., the pitch, voiced/unvoiced flag, aperiodicity) of the source speech to control the prosody of generated waveform. However, the prosody is related with many fac tors, such as the intonation, stress and rhythm. It is a challenging task to perfectly describe the prosody through acoustic features. To deal with this problem, we propose prosody embeddings to model prosody. These embeddings are learned from the source speech in an unsupervised manner. We conduct experiments on our Mandarin corpus recoded by professional speakers. Experimental results demonstrate that the proposed method enables fine-grained control of the prosody. In challenging situations (such as the source speech is a singing song), our proposed method can also achieve promising results.
120 - Tingle Li , Yichen Liu , Chenxu Hu 2020
Cycle consistent generative adversarial network (CycleGAN) and variational autoencoder (VAE) based models have gained popularity in non-parallel voice conversion recently. However, they often suffer from difficult training process and unsatisfactory results. In this paper, we propose CVC, a contrastive learning-based adversarial approach for voice conversion. Compared to previous CycleGAN-based methods, CVC only requires an efficient one-way GAN training by taking the advantage of contrastive learning. When it comes to non-parallel one-to-one voice conversion, CVC is on par or better than CycleGAN and VAE while effectively reducing training time. CVC further demonstrates superior performance in many-to-one voice conversion, enabling the conversion from unseen speakers.
Speaking rate refers to the average number of phonemes within some unit time, while the rhythmic patterns refer to duration distributions for realizations of different phonemes within different phonetic structures. Both are key components of prosody in speech, which is different for different speakers. Models like cycle-consistent adversarial network (Cycle-GAN) and variational auto-encoder (VAE) have been successfully applied to voice conversion tasks without parallel data. However, due to the neural network architectures and feature vectors chosen for these approaches, the length of the predicted utterance has to be fixed to that of the input utterance, which limits the flexibility in mimicking the speaking rates and rhythmic patterns for the target speaker. On the other hand, sequence-to-sequence learning model was used to remove the above length constraint, but parallel training data are needed. In this paper, we propose an approach utilizing sequence-to-sequence model trained with unsupervised Cycle-GAN to perform the transformation between the phoneme posteriorgram sequences for different speakers. In this way, the length constraint mentioned above is removed to offer rhythm-flexible voice conversion without requiring parallel data. Preliminary evaluation on two datasets showed very encouraging results.
In voice conversion (VC), an approach showing promising results in the latest voice conversion challenge (VCC) 2020 is to first use an automatic speech recognition (ASR) model to transcribe the source speech into the underlying linguistic contents; t hese are then used as input by a text-to-speech (TTS) system to generate the converted speech. Such a paradigm, referred to as ASR+TTS, overlooks the modeling of prosody, which plays an important role in speech naturalness and conversion similarity. Although some researchers have considered transferring prosodic clues from the source speech, there arises a speaker mismatch during training and conversion. To address this issue, in this work, we propose to directly predict prosody from the linguistic representation in a target-speaker-dependent manner, referred to as target text prediction (TTP). We evaluate both methods on the VCC2020 benchmark and consider different linguistic representations. The results demonstrate the effectiveness of TTP in both objective and subjective evaluations.
Recently, dual-path networks have achieved promising performance due to their ability to model local and global features of the input sequence. However, previous studies are based on simple time-domain features and do not fully investigate the impact of the input features of the dual-path network on the enhancement performance. In this paper, we propose a dual-path transformer-based full-band and sub-band fusion network (DPT-FSNet) for speech enhancement in the frequency domain. The intra and inter parts of the dual-path transformer network in our model can be seen as sub-band and full-band modeling respectively, which have stronger interpretability as well as more information compared to the features utilized by the time-domain transformer. We conducted experiments on the Voice Bank + DEMAND dataset to evaluate the proposed method. Experimental results show that the proposed method outperforms the current state-of-the-arts in terms of PESQ, STOI, CSIG, COVL. (The PESQ, STOI, CSIG, and COVL scores on the Voice Bank + DEMAND dataset were 3.30, 0.95, 4.51, and 3.94, respectively).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا