ﻻ يوجد ملخص باللغة العربية
In this paper, we propose computationally efficient and high-quality methods for statistical voice conversion (VC) with direct waveform modification based on spectral differentials. The conventional method with a minimum-phase filter achieves high-quality conversion but requires heavy computation in filtering. This is because the minimum phase using a fixed lifter of the Hilbert transform often results in a long-tap filter. One of our methods is a data-driven method for lifter training. Since this method takes filter truncation into account in training, it can shorten the tap length of the filter while preserving conversion accuracy. Our other method is sub-band processing for extending the conventional method from narrow-band (16 kHz) to full-band (48 kHz) VC, which can convert a full-band waveform with higher converted-speech quality. Experimental results indicate that 1) the proposed lifter-training method for narrow-band VC can shorten the tap length to 1/16 without degrading the converted-speech quality and 2) the proposed sub-band-processing method for full-band VC can improve the converted-speech quality than the conventional method.
In a typical voice conversion system, prior works utilize various acoustic features (e.g., the pitch, voiced/unvoiced flag, aperiodicity) of the source speech to control the prosody of generated waveform. However, the prosody is related with many fac
Cycle consistent generative adversarial network (CycleGAN) and variational autoencoder (VAE) based models have gained popularity in non-parallel voice conversion recently. However, they often suffer from difficult training process and unsatisfactory
Speaking rate refers to the average number of phonemes within some unit time, while the rhythmic patterns refer to duration distributions for realizations of different phonemes within different phonetic structures. Both are key components of prosody
In voice conversion (VC), an approach showing promising results in the latest voice conversion challenge (VCC) 2020 is to first use an automatic speech recognition (ASR) model to transcribe the source speech into the underlying linguistic contents; t
Recently, dual-path networks have achieved promising performance due to their ability to model local and global features of the input sequence. However, previous studies are based on simple time-domain features and do not fully investigate the impact