ترغب بنشر مسار تعليمي؟ اضغط هنا

Simple, Credible, and Approximately-Optimal Auctions

108   0   0.0 ( 0 )
 نشر من قبل Santhoshini Velusamy
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We identify the first static credible mechanism for multi-item additive auctions that achieves a constant factor of the optimal revenue. This is one instance of a more general framework for designing two-part tariff auctions, adapting the duality framework of Cai et al [CDW16]. Given a (not necessarily incentive compatible) auction format $A$ satisfying certain technical conditions, our framework augments the auction with a personalized entry fee for each bidder, which must be paid before the auction can be accessed. These entry fees depend only on the prior distribution of bidder types, and in particular are independent of realized bids. Our framework can be used with many common auction formats, such as simultaneous first-price, simultaneous second-price, and simultaneous all-pay auctions. If all-pay auctions are used, we prove that the resulting mechanism is credible in the sense that the auctioneer cannot benefit by deviating from the stated mechanism after observing agent bids. If second-price auctions are used, we obtain a truthful $O(1)$-approximate mechanism with fixed entry fees that are amenable to tuning via online learning techniques. Our results for first price and all-pay are the first revenue guarantees of non-truthful mechanisms in multi-dimensional environments; an open question in the literature [RST17].



قيم البحث

اقرأ أيضاً

The question of the minimum menu-size for approximate (i.e., up-to-$varepsilon$) Bayesian revenue maximization when selling two goods to an additive risk-neutral quasilinear buyer was introduced by Hart and Nisan (2013), who give an upper bound of $O (frac{1}{varepsilon^4})$ for this problem. Using the optimal-transport duality framework of Daskalakis et al. (2013, 2015), we derive the first lower bound for this problem - of $Omega(frac{1}{sqrt[4]{varepsilon}})$, even when the values for the two goods are drawn i.i.d. from nice distributions, establishing how to reason about approximately optimal mechanisms via this duality framework. This bound implies, for any fixed number of goods, a tight bound of $Theta(logfrac{1}{varepsilon})$ on the minimum deterministic communication complexity guaranteed to suffice for running some approximately revenue-maximizing mechanism, thereby completely resolving this problem. As a secondary result, we show that under standard economic assumptions on distributions, the above upper bound of Hart and Nisan (2013) can be strengthened to $O(frac{1}{varepsilon^2})$.
Mechanism design for one-sided markets has been investigated for several decades in economics and in computer science. More recently, there has been an increased attention on mechanisms for two-sided markets, in which buyers and sellers act strategic ally. For two-sided markets, an impossibility result of Myerson and Satterthwaite states that no mechanism can simultaneously satisfy individual rationality (IR), incentive compatibility (IC), strong budget-balance (SBB), and be efficient. On the other hand, important applications to web advertisement, stock exchange, and frequency spectrum allocation, require us to consider two-sided combinatorial auctions in which buyers have preferences on subsets of items, and sellers may offer multiple heterogeneous items. No efficient mechanism was known so far for such two-sided combinatorial markets. This work provides the first IR, IC and SBB mechanisms that provides an O(1)-approximation to the optimal social welfare for two-sided markets. An initial construction yields such a mechanism, but exposes a conceptual problem in the traditional SBB notion. This leads us to define the stronger notion of direct trade strong budget balance (DSBB). We then proceed to design mechanisms that are IR, IC, DSBB, and again provide an O(1)-approximation to the optimal social welfare. Our mechanisms work for any number of buyers with XOS valuations - a class in between submodular and subadditive functions - and any number of sellers. We provide a mechanism that is dominant strategy incentive compatible (DSIC) if the sellers each have one item for sale, and one that is bayesian incentive compatible (BIC) if sellers hold multiple items and have additive valuations over them. Finally, we present a DSIC mechanism for the case that the valuation functions of all buyers and sellers are additive.
We consider a revenue-maximizing seller with $m$ heterogeneous items and a single buyer whose valuation $v$ for the items may exhibit both substitutes (i.e., for some $S, T$, $v(S cup T) < v(S) + v(T)$) and complements (i.e., for some $S, T$, $v(S cu p T) > v(S) + v(T)$). We show that the mechanism first proposed by Babaioff et al. [2014] - the better of selling the items separately and bundling them together - guarantees a $Theta(d)$ fraction of the optimal revenue, where $d$ is a measure on the degree of complementarity. Note that this is the first approximately optimal mechanism for a buyer whose valuation exhibits any kind of complementarity, and extends the work of Rubinstein and Weinberg [2015], which proved that the same simple mechanisms achieve a constant factor approximation when buyer valuations are subadditive, the most general class of complement-free valuations. Our proof is enabled by the recent duality framework developed in Cai et al. [2016], which we use to obtain a bound on the optimal revenue in this setting. Our main technical contributions are specialized to handle the intricacies of settings with complements, and include an algorithm for partitioning edges in a hypergraph. Even nailing down the right model and notion of degree of complementarity to obtain meaningful results is of interest, as the natural extensions of previous definitions provably fail.
Second-price auctions with deposits are frequently used in blockchain environments. An auction takes place on-chain: bidders deposit an amount that fully covers their bid (but possibly exceeds it) in a smart contract. The deposit is used as insurance against bidders not honoring their bid if they win. The deposit, but not the bid, is publicly observed during the bidding phase of the auction. The visibility of deposits can fundamentally change the strategic structure of the auction if bidding happens sequentially: Bidding is costly since deposit are costly to make. Thus, deposits can be used as a costly signal for a high valuation. This is the source of multiple inefficiencies: To engage in costly signalling, a bidder who bids first and has a high valuation will generally over-deposit in equilibrium, i.e.~deposit more than he will bid. If high valuations are likely there can, moreover, be entry deterrence through high deposits: a bidder who bids first can deter subsequent bidders from entering the auction. Pooling can happen in equilibrium, where bidders of different valuations deposit the same amount. The auction fails to allocate the item to the bidder with the highest valuation.
A common practice in many auctions is to offer bidders an opportunity to improve their bids, known as a Best and Final Offer (BAFO) stage. This final bid can depend on new information provided about either the asset or the competitors. This paper exa mines the effects of new information regarding competitors, seeking to determine what information the auctioneer should provide assuming the set of allowable bids is discrete. The rational strategy profile that maximizes the revenue of the auctioneer is the one where each bidder makes the highest possible bid that is lower than his valuation of the item. This strategy profile is an equilibrium for a large enough number of bidders, regardless of the information released. We compare the number of bidders needed for this profile to be an equilibrium under different information settings. We find that it becomes an equilibrium with fewer bidders when less additional information is made available to the bidders regarding the competition. It follows that when the number of bidders is a priori unknown, there are some advantages to the auctioneer to not reveal information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا