ترغب بنشر مسار تعليمي؟ اضغط هنا

Bounding the Menu-Size of Approximately Optimal Auctions via Optimal-Transport Duality

63   0   0.0 ( 0 )
 نشر من قبل Yannai A. Gonczarowski
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The question of the minimum menu-size for approximate (i.e., up-to-$varepsilon$) Bayesian revenue maximization when selling two goods to an additive risk-neutral quasilinear buyer was introduced by Hart and Nisan (2013), who give an upper bound of $O(frac{1}{varepsilon^4})$ for this problem. Using the optimal-transport duality framework of Daskalakis et al. (2013, 2015), we derive the first lower bound for this problem - of $Omega(frac{1}{sqrt[4]{varepsilon}})$, even when the values for the two goods are drawn i.i.d. from nice distributions, establishing how to reason about approximately optimal mechanisms via this duality framework. This bound implies, for any fixed number of goods, a tight bound of $Theta(logfrac{1}{varepsilon})$ on the minimum deterministic communication complexity guaranteed to suffice for running some approximately revenue-maximizing mechanism, thereby completely resolving this problem. As a secondary result, we show that under standard economic assumptions on distributions, the above upper bound of Hart and Nisan (2013) can be strengthened to $O(frac{1}{varepsilon^2})$.



قيم البحث

اقرأ أيضاً

We identify the first static credible mechanism for multi-item additive auctions that achieves a constant factor of the optimal revenue. This is one instance of a more general framework for designing two-part tariff auctions, adapting the duality fra mework of Cai et al [CDW16]. Given a (not necessarily incentive compatible) auction format $A$ satisfying certain technical conditions, our framework augments the auction with a personalized entry fee for each bidder, which must be paid before the auction can be accessed. These entry fees depend only on the prior distribution of bidder types, and in particular are independent of realized bids. Our framework can be used with many common auction formats, such as simultaneous first-price, simultaneous second-price, and simultaneous all-pay auctions. If all-pay auctions are used, we prove that the resulting mechanism is credible in the sense that the auctioneer cannot benefit by deviating from the stated mechanism after observing agent bids. If second-price auctions are used, we obtain a truthful $O(1)$-approximate mechanism with fixed entry fees that are amenable to tuning via online learning techniques. Our results for first price and all-pay are the first revenue guarantees of non-truthful mechanisms in multi-dimensional environments; an open question in the literature [RST17].
This paper develops a general approach, rooted in statistical learning theory, to learning an approximately revenue-maximizing auction from data. We introduce $t$-level auctions to interpolate between simple auctions, such as welfare maximization wit h reserve prices, and optimal auctions, thereby balancing the competing demands of expressivity and simplicity. We prove that such auctions have small representation error, in the sense that for every product distribution $F$ over bidders valuations, there exists a $t$-level auction with small $t$ and expected revenue close to optimal. We show that the set of $t$-level auctions has modest pseudo-dimension (for polynomial $t$) and therefore leads to small learning error. One consequence of our results is that, in arbitrary single-parameter settings, one can learn a mechanism with expected revenue arbitrarily close to optimal from a polynomial number of samples.
We study the design of a decentralized two-sided matching market in which agents search is guided by the platform. There are finitely many agent types, each with (potentially random) preferences drawn from known type-specific distributions. Equipped with knowledge of these distributions, the platform guides the search process by determining the meeting rate between each pair of types from the two sides. Focusing on symmetric pairwise preferences in a continuum model, we first characterize the unique stationary equilibrium that arises given a feasible set of meeting rates. We then introduce the platforms optimal directed search problem, which involves optimizing meeting rates to maximize equilibrium social welfare. We first show that incentive issues arising from congestion and cannibalization make the design problem fairly intricate. Nonetheless, we develop an efficiently computable search design whose corresponding equilibrium achieves at least 1/4 the social welfare of the optimal design. In fact, our construction always recovers at least 1/4 the first-best social welfare, where agents incentives are disregarded. Our directed search design is simple and easy-to-implement, as its corresponding bipartite graph consists of disjoint stars. Furthermore, our design implies the platform can substantially limit choice and yet induce an equilibrium with an approximately optimal welfare. Finally, we show that approximation is likely the best we can hope for by establishing that the problem of designing optimal directed search is NP-hard to even approximate beyond a certain constant factor.
Mechanism design for one-sided markets has been investigated for several decades in economics and in computer science. More recently, there has been an increased attention on mechanisms for two-sided markets, in which buyers and sellers act strategic ally. For two-sided markets, an impossibility result of Myerson and Satterthwaite states that no mechanism can simultaneously satisfy individual rationality (IR), incentive compatibility (IC), strong budget-balance (SBB), and be efficient. On the other hand, important applications to web advertisement, stock exchange, and frequency spectrum allocation, require us to consider two-sided combinatorial auctions in which buyers have preferences on subsets of items, and sellers may offer multiple heterogeneous items. No efficient mechanism was known so far for such two-sided combinatorial markets. This work provides the first IR, IC and SBB mechanisms that provides an O(1)-approximation to the optimal social welfare for two-sided markets. An initial construction yields such a mechanism, but exposes a conceptual problem in the traditional SBB notion. This leads us to define the stronger notion of direct trade strong budget balance (DSBB). We then proceed to design mechanisms that are IR, IC, DSBB, and again provide an O(1)-approximation to the optimal social welfare. Our mechanisms work for any number of buyers with XOS valuations - a class in between submodular and subadditive functions - and any number of sellers. We provide a mechanism that is dominant strategy incentive compatible (DSIC) if the sellers each have one item for sale, and one that is bayesian incentive compatible (BIC) if sellers hold multiple items and have additive valuations over them. Finally, we present a DSIC mechanism for the case that the valuation functions of all buyers and sellers are additive.
Consider a monopolist selling $n$ items to an additive buyer whose item values are drawn from independent distributions $F_1,F_2,ldots,F_n$ possibly having unbounded support. Unlike in the single-item case, it is well known that the revenue-optimal s elling mechanism (a pricing scheme) may be complex, sometimes requiring a continuum of menu entries. Also known is that simple mechanisms with a bounded number of menu entries can extract a constant fraction of the optimal revenue. Nonetheless, whether an arbitrarily high fraction of the optimal revenue can be extracted via a bounded menu size remained open. We give an affirmative answer: for every $n$ and $varepsilon>0$, there exists $C=C(n,varepsilon)$ s.t. mechanisms of menu size at most $C$ suffice for obtaining $(1-varepsilon)$ of the optimal revenue from any $F_1,ldots,F_n$. We prove upper and lower bounds on the revenue-approximation complexity $C(n,varepsilon)$ and on the deterministic communication complexity required to run a mechanism achieving such an approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا