ﻻ يوجد ملخص باللغة العربية
Scintillator-based calorimeters for experiments at Higgs factories (e.g. ILC) demand scintillator designs that can detect sufficient number of photons and have good light yield uniformity, and that they can be easily mass-produced. In order to meet these requirements, scintillator strips with a small dimple has been proposed. In our study, we measure the light yield of a dimple scintillator sample; we then compare the measurements with light tracing simulation using GEANT4. We intend to use our results to propose an optimized scintillator shape.
We describe an algorithm which has been developed to extract fine granularity information from an electromagnetic calorimeter with strip-based readout. Such a calorimeter, based on scintillator strips, is being developed to apply particle flow recons
A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test b
The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called heavy photon. Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable
Shashlyk-type electromagnetic calorimeter (ECal) of the Multi-Purpose Detector at heavy-ion NICA collider is optimized to provide precise spatial and energy measurements for photons and electrons in the energy range from about 40 MeV to 2-3 GeV. To d
A highly granular electromagnetic calorimeter with scintillator strip readout is being developed for future lepton collider experiments. A prototype of 21.5 $X_0$ depth and $180 times 180 $mm$^2$ transverse dimensions was constructed, consisting of 2