ﻻ يوجد ملخص باللغة العربية
A highly granular electromagnetic calorimeter with scintillator strip readout is being developed for future lepton collider experiments. A prototype of 21.5 $X_0$ depth and $180 times 180 $mm$^2$ transverse dimensions was constructed, consisting of 2160 individually read out $10 times 45 times 3$ mm$^3$ scintillator strips. This prototype was tested using electrons of 2--32 GeV at the Fermilab Test Beam Facility in 2009. Deviations from linear energy response were less than 1.1%, and the intrinsic energy resolution was determined to be $(12.5 pm 0.1 (mathrm{stat.}) pm0.4 (mathrm{syst.}))%/sqrt{E[mathrm{GeV}]}oplus (1.2 pm 0.1(mathrm{stat.})^{+0.6}_{-0.7}(mathrm{syst.}))%$, where the uncertainties correspond to statistical and systematic sources, respectively.
The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with
We describe an algorithm which has been developed to extract fine granularity information from an electromagnetic calorimeter with strip-based readout. Such a calorimeter, based on scintillator strips, is being developed to apply particle flow recons
We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, pr
Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel a
The energy resolution of a highly granular 1 m3 analogue scintillator-steel hadronic calorimeter is studied using charged pions with energies from 10 GeV to 80 GeV at the CERN SPS. The energy resolution for single hadrons is determined to be approxim