ترغب بنشر مسار تعليمي؟ اضغط هنا

Low energy magnons in the chiral ferrimagnet $text{Cu}_2text{OSeO}_3$: a coarse-grained approach

66   0   0.0 ( 0 )
 نشر من قبل Yi Luo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a comprehensive neutron scattering study of low energy magnetic excitations in the breathing pyrochlore helimagnetic $text{Cu}_2text{OSeO}_3$. Fully documenting the four lowest energy magnetic modes that leave the ferrimagnetic configuration of the strong tetrahedra intact ($|hbaromega|<13$ meV), we find gapless quadratic dispersion at the $Gamma$ point for energies above 0.2 meV, two doublets separated by 1.6(2) meV at the $R$ point, and a bounded continuum at the $X$ point. Our constrained rigid spin cluster model relates these features to Dzyaloshinskii-Moriya (DM) interactions and the incommensurate helical ground state. Combining conventional spin wave theory with a spin cluster form-factor accurately reproduces the measured equal time structure factor through multiple Brillouin zones. An effective spin Hamiltonian describing the complex anisotropic inter-cluster interactions is obtained.



قيم البحث

اقرأ أيضاً

Chiral magnets with topologically nontrivial spin order such as Skyrmions have generated enormous interest in both fundamental and applied sciences. We report broadband microwave spectroscopy performed on the insulating chiral ferrimagnet Cu$_{2}$OSe O$_{3}$. For the damping of magnetization dynamics we find a remarkably small Gilbert damping parameter of about $1times10^{-4}$ at 5 K. This value is only a factor of 4 larger than the one reported for the best insulating ferrimagnet yttrium iron garnet. We detect a series of sharp resonances and attribute them to confined spin waves in the mm-sized samples. Considering the small damping, insulating chiral magnets turn out to be promising candidates when exploring non-collinear spin structures for high frequency applications.
61 - S. A. Owerre 2018
Insulating honeycomb ferromagnet CrI$_3$ has recently attracted considerable attention due to its potential use for dissipationless spintronics applications. Recently, topological spin excitations have been observed experimentally in bulk CrI$_3$ by L. Chen, et al. [Phys. Rev. X ${bf 8}$, 041028 (2018)] using inelastic neutron scattering. This suggest that bulk CrI$_3$ has strong spin-orbit coupling and its spin Hamiltonian should include a next-nearest neighbour Dzyaloshinskii-Moriya (DM) interaction. Inspired by this experiment, we study non-equilibrium emergent photon-dressed topological spin and thermal Hall transports in laser-irradiated CrI$_3$ with and without the DM interaction. We show that the spin excitations can be manipulated into different topological phases with different Chern numbers. Most importantly, we show that the emergent photon-dressed spin and thermal Hall response can be switched to different signs. Hence, the generated magnon spin photocurrents can be manipulated by the laser field, which is of great interest in ultrafast spin current generation and could pave the way for future applications of CrI$_3$ to topological opto-spintronics and opto-magnonics.
In this work, we present a comprehensive study of the low energy optical magnetic response of the skyrmionic Mott insulator Cu$_2$OSeO$_3$ via high resolution time-domain THz spectroscopy. In zero field, a new magnetic excitation not predicted by spi n-wave theory with frequency $f$ = 2.03 THz is observed and shown, with accompanying time-of-flight neutron scattering experiments, to be a zone folded magnon from the $mathrm{R}$ to $mathrm{Gamma}$ points of the Brillouin zone. Highly sensitive polarimetry experiments performed in weak magnetic fields, $mu_0$H $<$ 200 mT, observe Faraday and Kerr rotations which are proportional to the sample magnetization, allowing for optical detection of the skyrmion phase and construction of a magnetic phase diagram. From these measurements, we extract a critical exponent of $beta$ = 0.35 $pm$ 0.04, in good agreement with the expected value for the 3D Heisenberg universality class of $beta$ = 0.367. In large magnetic fields, $mu_0$H $>$ 5 T, we observe the magnetically active uniform mode of the ferrimagnetic field polarized phase whose dynamics as a function of field and temperature are studied. In addition to extracting a $g_text{eff}$ = 2.08 $pm$ 0.03, we observe the uniform mode to decay through a non-Gilbert damping mechanism and to possesses a finite spontaneous decay rate, $Gamma_0$ $approx$ 25 GHz, in the zero temperature limit. Our observations are attributed to Dzyaloshinkii-Moriya interactions, which have been proposed to be exceptionally strong in Cu$_2$OSeO$_3$ and are expected to impact the low energy magnetic response of such chiral magnets.
We report small angle neutron scattering (SANS) measurements of the skyrmion lattice in (Cu$_{0.976}$Zn$_{0.024}$)$_2$OSeO$_3$ under the application of an electric field. These measurements show an expansion of the skyrmion lattice stability region w ith electric field similar to that seen in pristine Cu$_2$OSeO$_3$. Furthermore, using time-resolved SANS, we observe the slow formation of skyrmions after an electric or magnetic field is applied, which has not been observed in pristine Cu$_2$OSeO$_3$ crystals. The measured formation times are dramatically longer than the corresponding skyrmion destruction times after the external field is removed, and increase exponentially from 100~s at 52.5~K to 10,000~s at 51.5~K. This thermally activated behaviour indicates an energy barrier for skyrmion formation of 1.57(2)~eV, the size of which demonstrates the huge cost for creating these complex chiral objects.
The cubic chiral helimagnets with the $P2_13$ space group represent a group of compounds in which the stable skyrmion-lattice state is experimentally observed. The key parameter that controls the energy landscape of such systems and determines the em ergence of a topologically nontrivial magnetic structures is the Dzyaloshinskii-Moriya interaction (DMI). Chemical substitution is recognized as a convenient instrument to tune the DMI in real materials and has been successfully utilized in studies of a number of chiral magnets, such as MnSi, FeGe, MnGe, and others. In our study, we applied small-angle neutron scattering to investigate how chemical substitution influences the skyrmionic properties of an insulating helimagnet Cu$_2$OSeO$_3$ when Cu ions are replaced by either Zn or Ni. Our results demonstrate that the DMI is enhanced in the Ni-substituted compounds (Cu,Ni)$_2$OSeO$_3$, but weakened in (Cu,Zn)$_2$OSeO$_3$. The observed changes in the DMI strength are reflected in the magnitude of the spin-spiral propagation vector and the temperature stability of the skyrmion phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا