ترغب بنشر مسار تعليمي؟ اضغط هنا

Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein Graph Double-Attention Network

132   0   0.0 ( 0 )
 نشر من قبل Jiachen Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Effective understanding of the environment and accurate trajectory prediction of surrounding dynamic obstacles are indispensable for intelligent mobile systems (like autonomous vehicles and social robots) to achieve safe and high-quality planning when they navigate in highly interactive and crowded scenarios. Due to the existence of frequent interactions and uncertainty in the scene evolution, it is desired for the prediction system to enable relational reasoning on different entities and provide a distribution of future trajectories for each agent. In this paper, we propose a generic generative neural system (called Social-WaGDAT) for multi-agent trajectory prediction, which makes a step forward to explicit interaction modeling by incorporating relational inductive biases with a dynamic graph representation and leverages both trajectory and scene context information. We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction which not only ensures physical feasibility but also enhances model performance. The proposed system is evaluated on three public benchmark datasets for trajectory prediction, where the agents cover pedestrians, cyclists and on-road vehicles. The experimental results demonstrate that our model achieves better performance than various baseline approaches in terms of prediction accuracy.



قيم البحث

اقرأ أيضاً

Better machine understanding of pedestrian behaviors enables faster progress in modeling interactions between agents such as autonomous vehicles and humans. Pedestrian trajectories are not only influenced by the pedestrian itself but also by interact ion with surrounding objects. Previous methods modeled these interactions by using a variety of aggregation methods that integrate different learned pedestrians states. We propose the Social Spatio-Temporal Graph Convolutional Neural Network (Social-STGCNN), which substitutes the need of aggregation methods by modeling the interactions as a graph. Our results show an improvement over the state of art by 20% on the Final Displacement Error (FDE) and an improvement on the Average Displacement Error (ADE) with 8.5 times less parameters and up to 48 times faster inference speed than previously reported methods. In addition, our model is data efficient, and exceeds previous state of the art on the ADE metric with only 20% of the training data. We propose a kernel function to embed the social interactions between pedestrians within the adjacency matrix. Through qualitative analysis, we show that our model inherited social behaviors that can be expected between pedestrians trajectories. Code is available at https://github.com/abduallahmohamed/Social-STGCNN.
We consider the problem of predicting the future path of a pedestrian using its motion history and the motion history of the surrounding pedestrians, called social information. Since the seminal paper on Social-LSTM, deep-learning has become the main tool used to model the impact of social interactions on a pedestrians motion. The demonstration that these models can learn social interactions relies on an ablative study of these models. The models are compared with and without their social interactions module on two standard metrics, the Average Displacement Error and Final Displacement Error. Yet, these complex models were recently outperformed by a simple constant-velocity approach. This questions if they actually allow to model social interactions as well as the validity of the proof. In this paper, we focus on the deep-learning models with a soft-attention mechanism for social interaction modeling and study whether they use social information at prediction time. We conduct two experiments across four state-of-the-art approaches on the ETH and UCY datasets, which were also used in previous work. First, the models are trained by replacing the social information with random noise and compared to model trained with actual social information. Second, we use a gating mechanism along with a $L_0$ penalty, allowing models to shut down their inner components. The models consistently learn to prune their soft-attention mechanism. For both experiments, neither the course of the convergence nor the prediction performance were altered. This demonstrates that the soft-attention mechanism and therefore the social information are ignored by the models.
Pedestrian trajectory prediction for surveillance video is one of the important research topics in the field of computer vision and a key technology of intelligent surveillance systems. Social relationship among pedestrians is a key factor influencin g pedestrian walking patterns but was mostly ignored in the literature. Pedestrians with different social relationships play different roles in the motion decision of target pedestrian. Motivated by this idea, we propose a Social Relationship Attention LSTM (SRA-LSTM) model to predict future trajectories. We design a social relationship encoder to obtain the representation of their social relationship through the relative position between each pair of pedestrians. Afterwards, the social relationship feature and latent movements are adopted to acquire the social relationship attention of this pair of pedestrians. Social interaction modeling is achieved by utilizing social relationship attention to aggregate movement information from neighbor pedestrians. Experimental results on two public walking pedestrian video datasets (ETH and UCY), our model achieves superior performance compared with state-of-the-art methods. Contrast experiments with other attention methods also demonstrate the effectiveness of social relationship attention.
Accurately predicting the binding affinity between drugs and proteins is an essential step for computational drug discovery. Since graph neural networks (GNNs) have demonstrated remarkable success in various graph-related tasks, GNNs have been consid ered as a promising tool to improve the binding affinity prediction in recent years. However, most of the existing GNN architectures can only encode the topological graph structure of drugs and proteins without considering the relative spatial information among their atoms. Whereas, different from other graph datasets such as social networks and commonsense knowledge graphs, the relative spatial position and chemical bonds among atoms have significant impacts on the binding affinity. To this end, in this paper, we propose a diStance-aware Molecule graph Attention Network (S-MAN) tailored to drug-target binding affinity prediction. As a dedicated solution, we first propose a position encoding mechanism to integrate the topological structure and spatial position information into the constructed pocket-ligand graph. Moreover, we propose a novel edge-node hierarchical attentive aggregation structure which has edge-level aggregation and node-level aggregation. The hierarchical attentive aggregation can capture spatial dependencies among atoms, as well as fuse the position-enhanced information with the capability of discriminating multiple spatial relations among atoms. Finally, we conduct extensive experiments on two standard datasets to demonstrate the effectiveness of S-MAN.
Forecasting human trajectories is critical for tasks such as robot crowd navigation and autonomous driving. Modeling social interactions is of great importance for accurate group-wise motion prediction. However, most existing methods do not consider information about coherence within the crowd, but rather only pairwise interactions. In this work, we propose a novel framework, coherent motion aware graph convolutional network (CoMoGCN), for trajectory prediction in crowded scenes with group constraints. First, we cluster pedestrian trajectories into groups according to motion coherence. Then, we use graph convolutional networks to aggregate crowd information efficiently. The CoMoGCN also takes advantage of variational autoencoders to capture the multimodal nature of the human trajectories by modeling the distribution. Our method achieves state-of-the-art performance on several different trajectory prediction benchmarks, and the best average performance among all benchmarks considered.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا