ترغب بنشر مسار تعليمي؟ اضغط هنا

Bacata: Notebooks for DSLs, Almost for Free

58   0   0.0 ( 0 )
 نشر من قبل Mauricio Verano Merino
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: Computational notebooks are a contemporary style of literate programming, in which users can communicate and transfer knowledge by interleaving executable code, output, and prose in a single rich document. A Domain-Specific Language (DSL) is an artificial software language tailored for a particular application domain. Usually, DSL users are domain experts that may not have a software engineering background. As a consequence, they might not be familiar with Integrated Development Environments (IDEs). Thus, the development of tools that offer different interfaces for interacting with a DSL is relevant. Inquiry: However, resources available to DSL designers are limited. We would like to leverage tools used to interact with general purpose languages in the context of DSLs. Computational notebooks are an example of such tools. Then, our main question is: What is an efficient and effective method of designing and implementing notebook interfaces for DSLs? By addressing this question we might be able to speed up the development of DSL tools, and ease the interaction between end-users and DSLs. Approach: In this paper, we present Bacata, a mechanism for generating notebook interfaces for DSLs in a language parametric fashion. We designed this mechanism in a way in which language engineers can reuse as many language components (e.g., language processors, type checkers, code generators) as possible. Knowledge: Our results show that notebook interfaces generated by Bacata can be automatically generated with little manual configuration. There are few considerations and caveats that should be addressed by language engineers that rely on language design aspects. The creation of a notebook for a DSL with Bacata becomes a matter of writing the code that wires existing language components in the Rascal language workbench with the Jupyter platform. Grounding: We evaluate Bacata by generating functional computational notebook interfaces for three different non-trivial DSLs, namely: a small subset of Halide (a DSL for digital image processing), SweeterJS (an extended version of JavaScript), and QL (a DSL for questionnaires). Additionally, it is relevant to generate notebook implementations rather than implementing them manually. We measured and compared the number of Source Lines of Code (SLOCs) that we reused from existing implementations of those languages. Importance: The adoption of notebooks by novice-programmers and end-users has made them very popular in several domains such as exploratory programming, data science, data journalism, and machine learning. Why are they popular? In (data) science, it is essential to make results reproducible as well as understandable. However, notebooks are only available for GPLs. This paper opens up the notebook metaphor for DSLs to improve the end-user experience when interacting with code and to increase DSLs adoption.

قيم البحث

اقرأ أيضاً

Transient gradual typing imposes run-time type tests that typically cause a linear slowdown in programs performance. This performance impact discourages the use of type annotations because adding types to a program makes the program slower. A virtual machine can employ standard just-in-time optimizations to reduce the overhead of transient checks to near zero. These optimizations can give gradually-typed languages performance comparable to state-of-the-art dynamic languages, so programmers can add types to their code without affecting their programs performance.
One form of type checking used in gradually typed language is transient type checking: whenever an object flows through code with a type annotation, the object is dynamically checked to ensure it has the methods required by the annotation. Just-in-ti me compilation and optimisation in virtual machines can eliminate much of the overhead of run-time transient type checks. Unfortunately this optimisation is not uniform: some type checks will significantly decrease, or even increase, a programs performance. In this paper, we refine the so called Takikawa protocol, and use it to identify which type annotations have the greatest effects on performance. In particular, we show how graphing the performance of such benchmarks when varying which type annotations are present in the source code can be used to discern potential patterns in performance. We demonstrate our approach by testing the Moth virtual machine: for many of the benchmarks where Moths transient type checking impacts performance, we have been able to identify one or two specific type annotations that are the likely cause. Without these type annotations, the performance impact of transient type checking becomes negligible. Using our technique programmers can optimise programs by removing expensive type checks, and VM engineers can identify new opportunities for compiler optimisation.
An important question for a probabilistic program is whether the probability mass of all its diverging runs is zero, that is that it terminates almost surely. Proving that can be hard, and this paper presents a new method for doing so; it is expresse d in a program logic, and so applies directly to source code. The programs may contain both probabilistic- and demonic choice, and the probabilistic choices may depend on the current state. As do other researchers, we use variant functions (a.k.a. super-martingales) that are real-valued and probabilistically might decrease on each loop iteration; but our key innovation is that the amount as well as the probability of the decrease are parametric. We prove the soundness of the new rule, indicate where its applicability goes beyond existing rules, and explain its connection to classical results on denumerable (non-demonic) Markov chains.
We show that noninterference and transparency, the key soundness theorems for dynamic IFC libraries, can be obtained for free, as direct consequences of the more general parametricity theorem of type abstraction. This allows us to give very short sou ndness proofs for dynamic IFC libraries such as faceted values and LIO. Our proofs stay short even when fully mechanized for Agda implementations of the libraries in terms of type abstraction.
Verification of concurrent data structures is one of the most challenging tasks in software verification. The topic has received considerable attention over the course of the last decade. Nevertheless, human-driven techniques remain cumbersome and no toriously difficult while automated approaches suffer from limited applicability. The main obstacle for automation is the complexity of concurrent data structures. This is particularly true in the absence of garbage collection. The intricacy of lock-free memory management paired with the complexity of concurrent data structures makes automated verification prohibitive. In this work we present a method for verifying concurrent data structures and their memory management separately. We suggest two simpler verification tasks that imply the correctness of the data structure. The first task establishes an over-approximation of the reclamation behavior of the memory management. The second task exploits this over-approximation to verify the data structure without the need to consider the implementation of the memory management itself. To make the resulting verification tasks tractable for automated techniques, we establish a second result. We show that a verification tool needs to consider only executions where a single memory location is reused. We implemented our approach and were able to verify linearizability of Michael&Scotts queue and the DGLM queue for both hazard pointers and epoch-based reclamation. To the best of our knowledge, we are the first to verify such implementations fully automatically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا