ترغب بنشر مسار تعليمي؟ اضغط هنا

Which of My Transient Type Checks Are Not (Almost) Free?

170   0   0.0 ( 0 )
 نشر من قبل Isaac Oscar Gariano
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

One form of type checking used in gradually typed language is transient type checking: whenever an object flows through code with a type annotation, the object is dynamically checked to ensure it has the methods required by the annotation. Just-in-time compilation and optimisation in virtual machines can eliminate much of the overhead of run-time transient type checks. Unfortunately this optimisation is not uniform: some type checks will significantly decrease, or even increase, a programs performance. In this paper, we refine the so called Takikawa protocol, and use it to identify which type annotations have the greatest effects on performance. In particular, we show how graphing the performance of such benchmarks when varying which type annotations are present in the source code can be used to discern potential patterns in performance. We demonstrate our approach by testing the Moth virtual machine: for many of the benchmarks where Moths transient type checking impacts performance, we have been able to identify one or two specific type annotations that are the likely cause. Without these type annotations, the performance impact of transient type checking becomes negligible. Using our technique programmers can optimise programs by removing expensive type checks, and VM engineers can identify new opportunities for compiler optimisation.



قيم البحث

اقرأ أيضاً

Transient gradual typing imposes run-time type tests that typically cause a linear slowdown in programs performance. This performance impact discourages the use of type annotations because adding types to a program makes the program slower. A virtual machine can employ standard just-in-time optimizations to reduce the overhead of transient checks to near zero. These optimizations can give gradually-typed languages performance comparable to state-of-the-art dynamic languages, so programmers can add types to their code without affecting their programs performance.
Context: Computational notebooks are a contemporary style of literate programming, in which users can communicate and transfer knowledge by interleaving executable code, output, and prose in a single rich document. A Domain-Specific Language (DSL) is an artificial software language tailored for a particular application domain. Usually, DSL users are domain experts that may not have a software engineering background. As a consequence, they might not be familiar with Integrated Development Environments (IDEs). Thus, the development of tools that offer different interfaces for interacting with a DSL is relevant. Inquiry: However, resources available to DSL designers are limited. We would like to leverage tools used to interact with general purpose languages in the context of DSLs. Computational notebooks are an example of such tools. Then, our main question is: What is an efficient and effective method of designing and implementing notebook interfaces for DSLs? By addressing this question we might be able to speed up the development of DSL tools, and ease the interaction between end-users and DSLs. Approach: In this paper, we present Bacata, a mechanism for generating notebook interfaces for DSLs in a language parametric fashion. We designed this mechanism in a way in which language engineers can reuse as many language components (e.g., language processors, type checkers, code generators) as possible. Knowledge: Our results show that notebook interfaces generated by Bacata can be automatically generated with little manual configuration. There are few considerations and caveats that should be addressed by language engineers that rely on language design aspects. The creation of a notebook for a DSL with Bacata becomes a matter of writing the code that wires existing language components in the Rascal language workbench with the Jupyter platform. Grounding: We evaluate Bacata by generating functional computational notebook interfaces for three different non-trivial DSLs, namely: a small subset of Halide (a DSL for digital image processing), SweeterJS (an extended version of JavaScript), and QL (a DSL for questionnaires). Additionally, it is relevant to generate notebook implementations rather than implementing them manually. We measured and compared the number of Source Lines of Code (SLOCs) that we reused from existing implementations of those languages. Importance: The adoption of notebooks by novice-programmers and end-users has made them very popular in several domains such as exploratory programming, data science, data journalism, and machine learning. Why are they popular? In (data) science, it is essential to make results reproducible as well as understandable. However, notebooks are only available for GPLs. This paper opens up the notebook metaphor for DSLs to improve the end-user experience when interacting with code and to increase DSLs adoption.
Bredon has constructed a 2-dimensional compact cohomology manifold which is not homologically locally connected, with respect to the singular homology. In the present paper we construct infinitely many such examples (which are in addition metrizable spaces) in all remaining dimensions $n ge 3$.
Hurewicz proved completely metrizable Menger spaces are /sigma-compact. We extend this to Cech-complete Menger spaces and consistently to projective Menger metrizable spaces. On the other hand, it is consistent that there is a co-analytic Menger space that is not /sigma-compact.
We show that the classical example $X$ of a 3-dimensional generalized manifold constructed by van Kampen is another example of not homologically locally connected (i.e. not HLC) space. This space $X$ is not locally homeomorphic to any of the compact metrizable 3-dimensional manifolds constructed in our earlier paper which are not HLC spaces either.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا