ﻻ يوجد ملخص باللغة العربية
Controlling the electronic properties via bandstructure engineering is at the heart of modern semiconductor devices. Here, we extend this concept to semimetals where, utilizing LuSb as a model system, we show that quantum confinement lifts carrier compensation and differentially affects the mobility of the electron and hole-like carriers resulting in a strong modification in its large, non-saturating magnetoresistance behavior. Bonding mismatch at the heteroepitaxial interface of a semimetal (LuSb) and a semiconductor (GaSb) leads to the emergence of a novel, two-dimensional, interfacial hole gas and is accompanied by a charge transfer across the interface that provides another avenue to modify the electronic structure and magnetotransport properties in the ultra-thin limit. Our work lays out a general strategy of utilizing confined thin film geometries and heteroepitaxial interfaces to engineer electronic structure in semimetallic systems, which allows control over their magnetoresistance behavior and simultaneously, provides insights into its origin.
Spin excitations of magnetic thin films are the founding element for novel transport concepts in spintronics, magnonics, and magnetic devices in general. While spin dynamics have been extensively studied in bulk materials, their behaviour in mesoscop
Anisotropic magnetoresistance (AMR), originating from spin-orbit coupling (SOC), is the sensitivity of the electrical resistance in magnetic systems to the direction of spin magnetization. Although this phenomenon has been experimentally reported for
First-principles density functional calculations are performed in C-BN heterojunctions. It is shown that the magnetism of the edge states in zigzag shaped graphene strips and polarity effects in BN strips team up to give a spin asymmetric screening t
Three-dimensional epitaxial heterostructures are based on covalently-bonded interfaces, whereas those from 2-dimensional (2D) materials exhibit van der Waals interactions. Under the right conditions, however, material structures with mixed interfacia
The interfacial charge transfer from the substrate may influence the electronic structure of the epitaxial van der Waals (vdW) monolayers and thus their further technological applications. For instance, the freestanding Sb monolayer in puckered honey