ﻻ يوجد ملخص باللغة العربية
We present an equation of motion coupled cluster approach for calculating and understanding intrinsic inelastic losses in core level x-ray absorption spectra (XAS). The method is based on a factorization of the transition amplitude in the time-domain, which leads to a convolution of an effective one-body spectrum and the core-hole spectral function. The spectral function characterizes these losses in terms of shake-up excitations and satellites, and is calculated using a cumulant representation of the core-hole Greens function that includes non-linear corrections. The one-body spectrum also includes orthogonality corrections that enhance the XAS at the edge.
We present ab initio absorption spectra of six three-dimensional semiconductors and insulators calculated using Gaussian-based periodic equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD). The spectra are calculate
Inelastic losses in core level x-ray spectra arise from many-body excitations, leading to broadening and damping as well as satellite peaks in x-ray photoemission (XPS) and x-ray absorption (XAS) spectra. Here we present a practical approach for calc
We discuss the analytic and diagrammatic structure of ionization potential (IP) and electron affinity (EA) equation-of-motion coupled-cluster (EOM-CC) theory, in order to put it on equal footing with the prevalent $GW$ approximation. The comparison i
We present a coupled cluster and linear response theory to compute properties of many-electron systems at non-zero temperatures. For this purpose, we make use of the thermofield dynamics, which allows for a compact wavefunction representation of the
Vibrationally resolved near-edge x-ray absorption spectra at the K-edge for a number of small molecules have been computed from anharmonic vibrational configuration interaction calculations of the Franck-Condon factors. The potential energy surfaces