ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangling Overlapping Beliefs by Structured Matrix Factorization

131   0   0.0 ( 0 )
 نشر من قبل Chaoqi Yang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Much work on social media opinion polarization focuses on identifying separate or orthogonal beliefs from media traces, thereby missing points of agreement among different communities. This paper develops a new class of Non-negative Matrix Factorization (NMF) algorithms that allow identification of both agreement and disagreement points when beliefs of different communities partially overlap. Specifically, we propose a novel Belief Structured Matrix Factorization algorithm (BSMF) to identify partially overlapping beliefs in polarized public social media. BSMF is totally unsupervised and considers three types of information: (i) who posted which opinion, (ii) keyword-level message similarity, and (iii) empirically observed social dependency graphs (e.g., retweet graphs), to improve belief separation. In the space of unsupervised belief separation algorithms, the emphasis was mostly given to the problem of identifying disjoint (e.g., conflicting) beliefs. The case when individuals with different beliefs agree on some subset of points was less explored. We observe that social beliefs overlap even in polarized scenarios. Our proposed unsupervised algorithm captures both the latent belief intersections and dissimilarities. We discuss the properties of the algorithm and conduct extensive experiments on both synthetic data and real-world datasets. The results show that our model outperforms all compared baselines by a great margin.



قيم البحث

اقرأ أيضاً

Deep neural network architectures have recently produced excellent results in a variety of areas in artificial intelligence and visual recognition, well surpassing traditional shallow architectures trained using hand-designed features. The power of d eep networks stems both from their ability to perform local computations followed by pointwise non-linearities over increasingly larger receptive fields, and from the simplicity and scalability of the gradient-descent training procedure based on backpropagation. An open problem is the inclusion of layers that perform global, structured matrix computations like segmentation (e.g. normalized cuts) or higher-order pooling (e.g. log-tangent space metrics defined over the manifold of symmetric positive definite matrices) while preserving the validity and efficiency of an end-to-end deep training framework. In this paper we propose a sound mathematical apparatus to formally integrate global structured computation into deep computation architectures. At the heart of our methodology is the development of the theory and practice of backpropagation that generalizes to the calculus of adjoint matrix variations. The proposed matrix backpropagation methodology applies broadly to a variety of problems in machine learning or computational perception. Here we illustrate it by performing visual segmentation experiments using the BSDS and MSCOCO benchmarks, where we show that deep networks relying on second-order pooling and normalized cuts layers, trained end-to-end using matrix backpropagation, outperform counterparts that do not take advantage of such global layers.
In recent years, substantial progress has been made on Graph Convolutional Networks (GCNs). However, the computing of GCN usually requires a large memory space for keeping the entire graph. In consequence, GCN is not flexible enough, especially for l arge scale graphs in complex real-world applications. Fortunately, methods based on Matrix Factorization (MF) naturally support constructing mini-batches, and thus are more friendly to distributed computing compared with GCN. Accordingly, in this paper, we analyze the connections between GCN and MF, and simplify GCN as matrix factorization with unitization and co-training. Furthermore, under the guidance of our analysis, we propose an alternative model to GCN named Unitized and Co-training Matrix Factorization (UCMF). Extensive experiments have been conducted on several real-world datasets. On the task of semi-supervised node classification, the experimental results illustrate that UCMF achieves similar or superior performances compared with GCN. Meanwhile, distributed UCMF significantly outperforms distributed GCN methods, which shows that UCMF can greatly benefit large scale and complex real-world applications. Moreover, we have also conducted experiments on a typical task of graph embedding, i.e., community detection, and the proposed UCMF model outperforms several representative graph embedding models.
Community structures detection is one of the fundamental problems in complex network analysis towards understanding the topology structures of the network and the functions of it. Nonnegative matrix factorization (NMF) is a widely used method for com munity detection, and modularity Q and modularity density D are criteria to evaluate the quality of community structures. In this paper, we establish the connections between Q, D and NMF for the first time. Q maximization can be approximately reformulated under the framework of NMF with Frobenius norm, especially when $n$ is large, and D maximization can also be reformulated under the framework of NMF. Q minimization can be reformulated under the framework of NMF with Kullback-Leibler divergence. We propose new methods for community structures detection based on the above findings, and the experimental results on synthetic networks demonstrate their effectiveness.
173 - Chao Yan , Hui-Min Cheng , Xin Liu 2018
Community structures detection in signed network is very important for understanding not only the topology structures of signed networks, but also the functions of them, such as information diffusion, epidemic spreading, etc. In this paper, we develo p a joint nonnegative matrix factorization model to detect community structures. In addition, we propose modified partition density to evaluate the quality of community structures. We use it to determine the appropriate number of communities. The effectiveness of our approach is demonstrated based on both synthetic and real-world networks.
People are shifting from traditional news sources to online news at an incredibly fast rate. However, the technology behind online news consumption promotes content that confirms the users existing point of view. This phenomenon has led to polarizati on of opinions and intolerance towards opposing views. Thus, a key problem is to model information filter bubbles on social media and design methods to eliminate them. In this paper, we use a machine-learning approach to learn a liberal-conservative ideology space on Twitter, and show how we can use the learned latent space to tackle the filter bubble problem. We model the problem of learning the liberal-conservative ideology space of social media users and media sources as a constrained non-negative matrix-factorization problem. Our model incorporates the social-network structure and content-consumption information in a joint factorization problem with shared latent factors. We validate our model and solution on a real-world Twitter dataset consisting of controversial topics, and show that we are able to separate users by ideology with over 90% purity. When applied to media sources, our approach estimates ideology scores that are highly correlated (Pearson correlation 0.9) with ground-truth ideology scores. Finally, we demonstrate the utility of our model in real-world scenarios, by illustrating how the learned ideology latent space can be used to develop exploratory and interactive interfaces that can help users in diffusing their information filter bubble.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا